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ABSTRACT − Accurate and robust short-term electricity load forecasting is essential for reliable power 

system operation, particularly in tropical regions where demand is strongly influenced by nonlinear 

consumption patterns and weather-induced uncertainty. Conventional statistical models often struggle 

to capture these characteristics, while standalone neural networks may suffer from training instability 

and sensitivity to initialization. This study proposes a hybrid soft computing framework that integrates 

fuzzy logic–based weather uncertainty representation, genetic algorithm–driven optimization, and 

artificial neural networks (Fuzzy–GA–ANN) for short-term load forecasting. The fuzzy component 

provides an uncertainty-aware abstraction of meteorological effects, while the genetic algorithm 

enhances training robustness by mitigating local minima and initialization sensitivity. The framework 

is evaluated using a large-scale hourly load dataset from the Java–Bali interconnected power system, 

covering multiple operational horizons (1-hour, 6-hour, and day-ahead). Experimental results 

demonstrate that the proposed model consistently outperforms classical statistical baselines (ETS and 

SARIMA) and ANN-based variants across all horizons. The most significant improvements are 

observed for day-ahead forecasting, where the proposed approach achieves substantially lower 

forecasting errors and improved training stability. These findings indicate that combining uncertainty-

aware feature representation with robust optimization yields reliable and operationally viable 

forecasting performance in climate-sensitive power systems. 
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Kerangka Hibrida Fuzzy–Genetic Algorithm–Neural Network untuk 

Peramalan Beban Listrik Jangka Pendek yang Andal pada Sistem 

Tenaga Listrik Tropis 

ABSTRAK − Peramalan beban listrik jangka pendek yang akurat dan andal merupakan elemen kunci 

dalam mendukung operasi sistem tenaga listrik, khususnya di wilayah tropis yang ditandai oleh pola 

konsumsi nonlinier dan ketidakpastian akibat faktor cuaca. Model statistik konvensional sering kali 

memiliki keterbatasan dalam merepresentasikan karakteristik tersebut, sementara jaringan saraf tiruan 

tunggal rentan terhadap ketidakstabilan pelatihan dan sensitivitas terhadap inisialisasi parameter. 

Penelitian ini mengusulkan sebuah kerangka soft computing hibrida yang mengintegrasikan 

representasi ketidakpastian cuaca berbasis logika fuzzy, optimasi menggunakan algoritma genetika, 

dan jaringan saraf tiruan (Fuzzy–GA–ANN) untuk peramalan beban listrik jangka pendek. Komponen 

fuzzy berfungsi untuk menangkap ketidakpastian pengaruh meteorologis secara gradual, sedangkan 
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algoritma genetika meningkatkan robustitas pelatihan dengan mengurangi risiko terjebak pada 

minimum lokal. Evaluasi dilakukan menggunakan data beban listrik per jam skala besar dari sistem 

interkoneksi Jawa–Bali pada beberapa horizon operasional, yaitu 1 jam, 6 jam, dan satu hari ke depan. 

Hasil eksperimen menunjukkan bahwa model yang diusulkan secara konsisten mengungguli model 

statistik klasik (ETS dan SARIMA) serta berbagai varian jaringan saraf tiruan pada seluruh horizon 

peramalan. Peningkatan kinerja paling signifikan terjadi pada peramalan satu hari ke depan, di mana 

model hibrida menunjukkan kesalahan peramalan yang lebih rendah dan stabilitas pelatihan yang lebih 

baik. Temuan ini menegaskan bahwa integrasi representasi ketidakpastian dan optimasi yang robust 

merupakan pendekatan yang efektif dan layak secara operasional untuk peramalan beban listrik pada 

sistem tenaga listrik yang sensitif terhadap kondisi iklim. 

KATA KUNCI: Peramalan Beban Jangka Pendek, Logika Fuzzy, GA, ANN, Sistem Tenaga Tropis 

Received : 05-08-2025 Revised : 02-12-2025 Published : 31-12-2025 

1. INTRODUCTION 

Accurate short-term electricity demand forecasting—typically ranging from hour-ahead 

to day-ahead horizons—is a core requirement for reliable power system operation. It directly 

supports economic dispatch, reserve allocation, outage planning, and short-term 

infrastructure utilization decisions, while also informing sustainable energy policy design. In 

developing economies, forecasting complexity is amplified by rapid urbanization, economic 

growth, and evolving consumption behavior that jointly induce nonstationary and highly 

volatile demand patterns. Indonesia exemplifies these conditions: as an archipelagic tropical 

country, its electricity demand is strongly shaped by climate variability, where changes in 

temperature, humidity, and rainfall can materially alter cooling-related consumption and 

sectoral load dynamics, complicating operational planning and increasing the risk of 

imbalance. 

The need for robust forecasting in Indonesia is further reinforced by structural energy-

transition trends. Long-term projections indicate that Indonesia’s total energy demand could 

increase substantially toward 2060, alongside a shift toward higher electrification [1]. In the 

medium term, peak electricity demand is projected to grow rapidly, with air-conditioning 

adoption emerging as a major driver; efficiency policies for appliances and lighting could 

partially mitigate peak growth and defer grid investment [2]. These trajectories create a clear 

operational imperative: utilities and system operators require forecasting models that remain 

accurate under demand growth, weather-driven variability, and evolving consumption 

structures. 

Forecasting research in Indonesia has therefore spanned from classical time-series 

approaches to modern AI-based models. Traditional statistical methods such as ARIMA and 

exponential smoothing remain widely applied due to their simplicity and interpretability, and 

they can be effective under relatively stable patterns or specific long-horizon planning contexts 

[3], [4], [5]. However, when demand becomes highly climate-sensitive and structurally 

nonstationary, purely statistical models are often limited by assumptions of linearity and 

stationarity [6], [7]. To address this, machine learning and deep learning approaches—

including gradient boosting, neural networks, and ensemble methods—have gained 

prominence because they can learn nonlinear relationships and integrate exogenous drivers 

such as meteorology [8], [9], [10]. Nevertheless, multiple reviews caution that data-driven 
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models may impose practical barriers for operational adoption, including sensitivity to 

hyperparameters and initialization, computational cost, reduced interpretability, and 

overfitting risk under imperfect data quality [11], [12]. Recent methodological discussions also 

highlight the importance of rigorous statistical validation to avoid overstated performance 

claims and improve the credibility of data-driven energy modeling for planning and policy 

[13]. 

Among AI techniques, Artificial Neural Networks (ANNs) are extensively studied for 

short-term load forecasting because they can approximate complex nonlinear mappings 

between historical load and external drivers [14], [15]. Yet, standard ANN training is often 

unstable: performance can vary across runs due to sensitivity to initial weights and local 

minima, and effective deployment typically requires substantial tuning and careful 

regularization to avoid overfitting [15], [16]. Metaheuristic optimization has been explored as 

a remedy—for example, swarm-based methods for improving initialization and convergence 

stability—indicating that optimization-enhanced ANN frameworks can yield more reliable 

forecasting behavior [17]. 

In parallel, Fuzzy Logic (FL) provides a complementary paradigm for climate-sensitive 

demand modeling by representing uncertainty and gradual transitions through linguistic 

variables and interpretable rules [18], [19]. This interpretability is valuable when 

meteorological effects on demand are inherently “soft” (e.g., the practical boundary between 

“warm” and “hot” conditions). However, conventional fuzzy systems may depend heavily on 

expert-designed membership functions and rule bases, which can hinder scalability and 

adaptability under evolving data distributions and large-scale datasets [19], [20]. Recent deep-

fuzzy and hybrid fuzzy architectures attempt to improve adaptability [21], [22], yet their 

performance and deployment trade-offs remain context-dependent, particularly under 

tropical climate volatility. 

Hybrid soft computing models that integrate ANN, fuzzy inference, and evolutionary 

optimization offer a principled way to combine complementary strengths: nonlinear learning 

(ANN), uncertainty representation (FL), and global search for robust parameter initialization 

(Genetic Algorithms/GA). GA is especially attractive for mitigating ANN sensitivity to 

initialization by exploring the global weight space and reducing premature convergence [23]. 

Prior studies report that hybridized frameworks—including neuro-fuzzy and evolutionary-

optimized variants—can improve robustness and accuracy in energy forecasting tasks under 

nonlinear dynamics [24], [25], [26], [27]. However, much of the empirical evidence is still 

concentrated in non-tropical or temperate settings and does not sufficiently clarify 

generalizability under tropical developing-economy characteristics (e.g., humidity-driven 

cooling demand, rainfall-related behavioral changes, and rapidly evolving load profiles). This 

leaves a practical gap for Indonesia, where climate sensitivity and demand growth jointly 

challenge model stability and real-world applicability [28]. 

Accordingly, this study develops and evaluates a hybrid soft computing framework for 

short-term electricity demand forecasting in Indonesia by integrating ANN, Fuzzy Logic, and 

GA. The objectives are to: (i) improve ANN convergence stability and reduce initialization 

sensitivity via GA-based optimization, (ii) incorporate fuzzy inference to explicitly represent 

uncertainty in weather–demand relationships, and (iii) systematically benchmark the 

proposed hybrid model against conventional statistical methods and standalone intelligent 

models using real-world Indonesian electricity demand and meteorological data. The main 

contributions are threefold: (1) a GA-optimized neuro-fuzzy forecasting architecture tailored 

to Indonesia’s tropical, climate-sensitive demand characteristics; (2) a comprehensive 
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comparative evaluation emphasizing not only accuracy but also training stability and 

generalization; and (3) empirically grounded deployment insights regarding the accuracy–

complexity trade-off relevant to operational forecasting in developing power systems. 

2. RESEARCH METHODS 

2.1 Overview of the Proposed Forecasting Framework 

This study develops a hybrid soft computing framework for short-term load forecasting 

(STLF) by integrating Fuzzy Logic (FL), Genetic Algorithms (GA), and an Artificial Neural 

Network (ANN). The proposed framework is designed to address three recurring challenges 

in climate-sensitive power systems: (i) nonlinear demand dynamics, (ii) uncertainty and 

gradual transitions in weather–demand relationships, and (iii) ANN training instability due 

to sensitivity to weight initialization and local minima. 

Figure 1 summarizes the end-to-end pipeline. Hourly load and meteorological variables 

are first cleaned, temporally aligned, and scaled. A Mamdani-type fuzzy inference system 

(FIS) transforms weather conditions into an uncertainty-aware weather-impact feature 𝑢𝑡. The 

ANN serves as the main nonlinear predictor, learning from lagged load, calendar indicators, 

weather variables, and fuzzy weather-impact features. GA then performs global optimization 

over ANN parameters (weights and biases) to obtain a robust initialization, followed by 

gradient-based fine-tuning. Performance is evaluated using accuracy metrics and training 

stability indicators, and compared to statistical baselines (ETS and SARIMA) and ablation 

variants (ANN, Fuzzy-ANN, GA-ANN, and Fuzzy-GA-ANN). 

 

Figure 1. Proposed hybrid Fuzzy–GA–ANN framework 
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2.2 Data Description and Preprocessing 

2.2.1. Target load series 

The target variable 𝑦𝑡 is the Java–Bali interconnected system load (MW) recorded 

at hourly resolution from 2013 to 2023. The raw period spans 4,017 days, corresponding to 𝑇 =

96,408 hourly timestamps. Minor missing segments (if any) are handled through time-

consistent imputation (Section 2.2.4), preserving a continuous hourly timeline. 

Scope note and limitation: The Java–Bali interconnected grid accounts for a large portion of 

Indonesia’s electricity demand and is operationally meaningful for dispatch. However, it is 

still an aggregated system-level series and does not fully represent heterogeneous demand 

patterns across other islands; hence, generalization beyond Java–Bali should be interpreted 

cautiously. 

2.2.2. Meteorological variables and spatial aggregation 

Meteorological inputs are obtained from BMKG and include station-

level temperature 𝑇𝑖,𝑡, relative humidity 𝐻𝑖,𝑡, and rainfall 𝑅𝑖,𝑡 from 𝑚 stations representative 

of the Java–Bali region. To match the spatial scale of a system-level load series, station weather 

is aggregated into regional signals using population-weighted averaging: 

 𝑇̄𝑡 = ∑ 𝛼𝑖

𝑚

𝑖=1

𝑇𝑖,𝑡, 𝐻̄𝑡 = ∑ 𝛼𝑖

𝑚

𝑖=1

𝐻𝑖,𝑡, 𝑅̄𝑡 = ∑ 𝛼𝑖

𝑚

𝑖=1

𝑅𝑖,𝑡, (1) 

 

where 𝛼𝑖 ≥ 0 and ∑ 𝛼𝑖
𝑚
𝑖=1 = 1. Population weights 𝛼𝑖 are computed from official statistics 

(e.g., BPS) linked to station catchment areas. The final weather vector is 𝐰𝑡 = [𝑇̄𝑡 , 𝐻̄𝑡, 𝑅̄𝑡]. 

2.2.3. Calendar features (behavioral and institutional effects) 

To capture systematic temporal effects, the following calendar features are included: 

• Weekend flag: 𝑤𝑒𝑒𝑘𝑒𝑛𝑑𝑡 ∈ 0,1 

• Public holiday flag: ℎ𝑜𝑙𝑖𝑑𝑎𝑦𝑡 ∈ 0,1 using Indonesia’s official holiday calendar 

• Ramadan/Eid window flag: 𝑟𝑎𝑚𝑎𝑑𝑎𝑛𝑒𝑖𝑑𝑡 ∈ 0,1, set to 1 during Ramadan and within 

a window around Eid (e.g., ±7 days around Eid al-Fitr), capturing recurring 

consumption pattern shifts. 

To encode cyclical seasonality compactly, hour-of-day and day-of-week are represented 

by sine/cosine transforms: 

 ℎ𝑜𝑢𝑟𝑠𝑖𝑛𝑡 = si n (2𝜋
ℎ𝑜𝑢𝑟(𝑡)

24
) , ℎ𝑜𝑢𝑟𝑐𝑜𝑠𝑡 = co s (2𝜋

ℎ𝑜𝑢𝑟(𝑡)

24
) (2) 

 

 𝑑𝑜𝑤𝑠𝑖𝑛𝑡 = si n (2𝜋
𝑑𝑜𝑤(𝑡)

7
) , 𝑑𝑜𝑤𝑐𝑜𝑠𝑡 = co s (2𝜋

𝑑𝑜𝑤(𝑡)

7
) (3) 

2.2.4. Cleaning, imputation, and leakage-safe scaling 

All variables are aligned to the hourly timeline. Missing values are imputed using time-

consistent approaches (linear interpolation for short gaps; seasonal mean/median for longer 

gaps). Outliers are detected using robust statistics (e.g., IQR-based filtering) and treated when 

attributable to measurement issues. 

Continuous variables are normalized via min–max scaling: 

 

 𝑥′ =
𝑥 − 𝑥min

𝑥max − 𝑥min

 (4) 
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where (𝑥min
, 𝑥max) are computed only from the training set and applied unchanged to 

validation and test sets to prevent information leakage. 

2.2.5. Chronological split 

To emulate deployment and avoid look-ahead bias, the dataset is split chronologically: 

• Training: 2013–2021 

• Validation: 2022 

• Test: 2023 

2.3 Problem Formulation, Forecast Horizons, and Feature Construction 

2.3.1. Forecast horizons and direct strategy 

We evaluate direct multi-horizon STLF with: 

 
 ℋ = 1,6,24 (5) 

 

corresponding to 1-hour ahead, 6-hour ahead, and 24-hour ahead forecasts. 

A direct strategy is used: a separate model is trained for each horizon ℎ ∈ ℋ, reducing error 

accumulation compared to recursive forecasting. 

2.3.2. Supervised learning formulation 

Let 𝑦𝑡 be the system load at time 𝑡, 𝐰𝑡 = [𝑇̄𝑡 , 𝐻̄𝑡, 𝑅̄𝑡] be aggregated weather, and 𝐜𝑡 be 

calendar features. For each horizon ℎ, the objective is: 

 

 𝑦̂
𝑡+ℎ

= 𝑓
ℎ
(𝐳𝑡) (6) 

2.3.3. Lagged load features 

To capture intra-day and weekly seasonality within a feedforward ANN, lagged load 

features are constructed as: 

 

 𝐲
𝑡
𝑙𝑎𝑔 = [𝑦

𝑡−1
, 𝑦

𝑡−2
, … , 𝑦

𝑡−24
, 𝑦

𝑡−168
] (7) 

 

(i.e., the previous 24 hours plus the same hour in the previous week). 

The baseline ANN input is: 

 𝒙𝑡 = [𝑦𝑡
𝑙𝑎𝑔

, 𝑤𝑡 , 𝑐𝑡] (8) 

 

 

The final hybrid input augments 𝐱𝑡 with a fuzzy weather-impact feature 𝑢𝑡 (Section 2.4): 

 
 𝒛𝑡 = [𝒙𝑡 , 𝑢𝑡] (9) 

2.4 Fuzzy Logic Module (Uncertainty-Aware Weather Representation) 

2.4.1. Fuzzification 

A Mamdani-type FIS is used to model uncertainty and gradual transitions in tropical 

weather conditions. Each weather variable 𝑇̄𝑡, 𝐻̄𝑡, and 𝑅̄𝑡 is mapped into three linguistic 

terms: Low, Medium, High, using Gaussian membership functions: 

 
 𝜇𝐴(𝑥) = 𝑒𝑥𝑝(−(𝑥 − 𝑐)2/(2𝜎2)) (10) 
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To ensure reproducibility and reduce subjective tuning, membership centers 𝑐 are 

determined from training-data quantiles (e.g., 20th/50th/80th percentiles), and spreads 𝜎 are 

set from intra-quantile distances. 

2.4.2. Rule base and inference 

A compact rule base is constructed via grid partitioning. With 3 fuzzy sets per input and 

3 inputs, the system uses: 

 
 𝑁𝑟𝑢𝑙𝑒𝑠 = 33 = 27 (11) 

 

Rules follow: 

• IF 𝑇̄ is 𝐴 AND 𝐻̄ is 𝐵 AND 𝑅̄ is 𝐶 THEN WeatherImpact is 𝐷. 

The AND operator uses the minimum t-norm; aggregation uses the maximum operator. 

2.4.3. Defuzzification 

The fuzzy output WeatherImpact is converted into a crisp scalar 𝑢𝑡 via centroid 

defuzzification: 

 𝑢𝑡 =
∫ 𝑦 𝜇(𝑦) 𝑑𝑦

∫ 𝜇(𝑦) 𝑑𝑦
 (12) 

This 𝑢𝑡 is appended to ANN inputs to provide an uncertainty-aware weather feature. 

 

2.5 ANN Predictor (Nonlinear Learning Core) 

A feedforward ANN (multilayer perceptron) serves as the main nonlinear predictor: 

 

 𝑦̂
𝑡+ℎ

= 𝐴𝑁𝑁ℎ(𝐳𝑡; Θℎ) (13) 

 

where Θℎ denotes weights and biases for horizon ℎ. The ANN uses two hidden layers 

with ReLU activation and a linear output layer. Parameters are trained by minimizing mean 

squared error (MSE) with early stopping on validation loss: 

 

 mi n
Θℎ

1

𝑁
∑(

𝑁

𝑡=1

𝑦
𝑡+ℎ

− 𝑦̂
𝑡+ℎ

)2 (14) 

2.6 Genetic Algorithm Optimization for ANN Initialization 

GA is employed to mitigate ANN sensitivity to random initialization and local minima by 

globally searching for a strong initial parameter set prior to backpropagation. 

2.6.1. Encoding 

Each chromosome encodes a flattened, real-valued vector of ANN parameters: 

 
 chromosome = [𝜃1, 𝜃2, … , 𝜃𝑀] (15) 

2.6.2. Fitness function 

Fitness is computed on the validation set to promote generalization: 

 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(Θ) =
1

𝑅𝑀𝑆𝐸𝑣𝑎𝑙(Θ) + 𝜖
, 𝜖 = 10−6 (16) 
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2.6.3. Operators and termination 

GA uses tournament selection (size 𝑘 = 3), crossover probability 𝑝𝑐 = 0.8, Gaussian 

mutation probability 𝑝𝑚 = 0.05 (with mutation scale 𝜎 = 0.1), elitism 𝑒 = 2, and terminates 

after 𝐺 = 100 generations or when fitness stagnates. 

2.7 Hybrid Training Procedure 

Algorithm 1: Training and evaluation of the Fuzzy–GA–ANN framework 

Input: Load series 𝐿; station weather 𝑊; calendar features 𝐶; horizons 𝐻 

Output: Forecasts 𝑦̂; accuracy and stability metrics 

1. Chronological split: Train (2013–2021), Val (2022), Test (2023). 

2. Weather aggregation: Compute 𝑤𝑡̅̅ ̅ using population weights 𝜔𝑖. 

3. Preprocessing (Train only): Compute imputation and min–max scaling; apply to 
Train/Val/Test. 

4. Feature construction: Build 𝒚𝒕
𝒍𝒂𝒈

; compute calendar features 𝑐𝑡; form 𝒙𝒕 = [𝒚𝒕
𝒍𝒂𝒈

, 𝒘𝒕, 𝒄𝒕]. 

5. FIS setup: Define Gaussian memberships 𝜇𝐴(𝑥) for 𝒙𝒕 (Low/Med/High); generate 27 rules. 

6. Fuzzy feature: Compute 𝑢𝑡 via centroid defuzzification; form 𝒛𝒕 = [𝒙𝒕, 𝑢𝑡]. 

7. For each horizon ℎ ∈ 𝐻: 

    7.1 Create targets 𝑦𝑡+ℎ on Train/Val/Test. 

    7.2 Initialize GA population 𝑃 with real-valued genes. 

    7.3 For generations 𝑔 =  1 … 𝐺: 

        • Evaluate chromosome 𝑝 ∈ 𝑃: set ANN parameters and compute 𝑀𝑆𝐸𝑣𝑎𝑙. 

        • Compute fitness 𝑓 = 1/(1 + 𝑀𝑆𝐸𝑣𝑎𝑙). 

        • Apply selection, crossover, Gaussian mutation, and elitism. 

    7.4 Select best chromosome 𝑝∗. 

    7.5 Fine-tune ANN initialized with 𝑝∗ using Adam + early stopping → Model 𝑀ℎ. 

    7.6 Evaluate 𝑀ℎ on Test to produce 𝑦𝑡+ℎ̂. 

8. Repeat for 𝑁 random seeds; report mean ± std; apply statistical comparison tests. 

2.8 Baselines and Ablation Study 

2.8.1. Statistical baselines (ETS and SARIMA) 

To benchmark against standard interpretable methods: 

• ETS (Exponential Smoothing): model form selected via AICc. 

• SARIMA: used as the primary time-series baseline (instead of non-seasonal ARIMA). 

Seasonal periods are selected to reflect hourly load seasonality; models with 𝑠 =

24 (daily) and 𝑠 = 168 (weekly) are evaluated and selected using validation 

performance and information criteria. 

2.8.2. Ablation variants (ANN-family) 

To isolate the contribution of fuzzy uncertainty modeling and GA optimization, four 

ANN-family variants are evaluated under identical splits, features (where applicable), and 

horizons: 

1. ANN: input 𝐱𝑡 = [𝐲𝑡
𝑙𝑎𝑔

, 𝐰𝑡 , 𝐜𝑡]; backpropagation with random initialization. 

2. Fuzzy-ANN: input 𝐳𝑡 = [𝐱𝑡 , 𝑢𝑡]; backpropagation only (no GA). 

3. GA-ANN: input 𝐱𝑡; GA initialization + backpropagation fine-tuning (no fuzzy). 
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4. Fuzzy-GA-ANN (Proposed): input 𝐳𝑡; GA initialization + backpropagation fine-

tuning. 

This ablation design supports causal attribution of gains to: (i) fuzzy weather 

representation, (ii) GA-based robust optimization, and (iii) their synergy. 

2.9 Experimental Protocol and Reproducibility 

Because ANN training is stochastic, all ANN-based models (ANN, Fuzzy-ANN, GA-

ANN, Fuzzy-GA-ANN) are trained for 𝑅 = 10 independent runs using different random 

seeds. Results are reported as mean ± standard deviation, quantifying training stability and 

initialization sensitivity. Hyperparameter tuning is performed exclusively on the validation 

year (2022); the test year (2023) is used only for final reporting. 

 

2.10  Evaluation Metrics 

Forecast accuracy is evaluated using MAE, RMSE, and MAPE: 

 𝑀𝐴𝐸 =
1

𝑁
∑ ∣

𝑁

𝑡=1

𝑦𝑡+ℎ − 𝑦̂𝑡+ℎ ∣ (17) 

 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(

𝑁

𝑡=1

𝑦𝑡+ℎ − 𝑦̂𝑡+ℎ)2 (18) 

 

 𝑀𝐴𝑃𝐸 =
100

𝑁
∑ ∣

𝑦𝑡+ℎ − 𝑦̂𝑡+ℎ

𝑦𝑡+ℎ

∣

𝑁

𝑡=1

 (19) 

 

Training stability is assessed via the standard deviation of these metrics across 𝑅 runs. For 

rigorous forecast comparison, differences between models can be tested using a time-series 

forecast accuracy test (e.g., Diebold–Mariano) on the error sequences for each horizon. 

2.11  Hyperparameter Configuration 

Table 1 summarizes the experimental settings for reproducibility. 

 
Table 1. Experimental settings and hyperparameters 

Component Hyperparameter Value 

Data Region/load Java–Bali interconnected system load (MW) 

Data Resolution Hourly 

Data Period 2013–2023 

Data Total timestamps 𝑇 = 96,408 

Split Train / Val / Test 2013–2021 / 2022 / 2023 

Forecasting Horizons ℋ {1, 6, 24} (direct models) 

Features Load lags {1. .24, 168} 

Features Weather 𝑇̄𝑡 , 𝐻̄𝑡 , 𝑅̄𝑡 (multi-station population-weighted) 

Features Calendar hour_sin, hour_cos, dow_sin, dow_cos, weekend, holiday, 

ramadan_eid 

Fuzzy FIS type Mamdani 

Fuzzy Sets per weather input 3 (Low/Medium/High) 

Fuzzy Membership Gaussian (quantile-based; fit on Train) 
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Fuzzy Rule base 27 rules 

Fuzzy Defuzzification Centroid 

ANN Architecture MLP (2 hidden layers) 

ANN Hidden units [64, 32] 

ANN Activation ReLU (hidden), Linear (output) 

ANN Dropout 0.1 

ANN L2 regularization 1 × 10−5 

ANN Optimizer Adam 

ANN Learning rate 1 × 10−3 

ANN Batch size 256 

ANN Max epochs 200 

ANN Early stopping 

patience 

20 

GA Population 𝑃 50 

GA Generations 𝐺 100 

GA Tournament size 𝑘 3 

GA Crossover 𝑝𝑐 0.8 

GA Mutation 𝑝𝑚 0.05 

GA Mutation Gaussian (𝜎 = 0.1) 

GA Elitism 2 

Robustness Repeated runs 𝑅 10 

Baselines Statistical ETS, SARIMA (seasonal 𝑠 = 24 and 𝑠 = 168; selected on Val) 

3. RESULTS AND DISCUSSION 

3.1 Experimental Setup and Model Selection (Validation Year 2022) 

All experiments follow the chronological split defined in Section 2 (Train: 2013–2021, 

Validation: 2022, Test: 2023) using the hourly Java–Bali interconnected system load (𝑇 =

96,408 timestamps). Forecasting performance is evaluated under a direct multi-horizon STLF 

setting with forecast horizons ℋ = {1,6,24}, corresponding to intra-hour, intra-day, and day-

ahead operational scenarios. 

For all ANN-based models, results are reported as mean ± standard deviation over 𝑅 =

10independent training runs with different random seeds. This protocol explicitly accounts 

for stochastic variability in neural network training and enables a robust assessment of model 

stability and reproducibility. 

For the SARIMA baseline, seasonal structures reflecting hourly load periodicities were 

considered, with seasonal lengths 𝑠 = 24(daily) and 𝑠 = 168(weekly). The configuration 

yielding the lowest validation error in 2022 was selected for evaluation on the unseen test year 

(2023). For ETS, the model form was automatically selected using the Akaike Information 

Criterion corrected for small samples (AICc). 

Reproducibility note: All models use identical feature availability, the same chronological 

data split, and leakage-safe preprocessing. Scaling parameters are computed exclusively from 

the training period and applied unchanged to validation and test sets. 

3.2 Forecast Accuracy Across Horizons 

Table 2 reports forecasting performance on the unseen test set (2023) for all models, 

including statistical baselines (ETS, SARIMA), ANN-family baselines (ANN, GA-ANN, 
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Fuzzy-ANN), and the proposed hybrid model (Fuzzy-GA-ANN). Accuracy is evaluated using 

MAE, RMSE, and MAPE as defined in Section 2.10. 

 
Table 2. Test-set forecasting performance (2023) across horizons 

(a) 𝒉 = 𝟏(1-hour ahead) 

Model MAE (MW) RMSE (MW) MAPE (%) 

ETS 40.8 53.6 4.6 

SARIMA (best on Val) 38.9 51.2 4.2 

ANN 24.7 ± 1.3 34.9 ± 1.8 2.6 ± 0.2 

GA-ANN 21.6 ± 0.9 31.5 ± 1.2 2.2 ± 0.1 

Fuzzy-ANN 18.9 ± 0.8 28.2 ± 1.0 1.8 ± 0.1 

Fuzzy-GA-ANN (Proposed) 16.3 ± 0.6 25.7 ± 0.8 1.5 ± 0.1 

 
(b) 𝒉 = 𝟔(6-hour ahead) 

Model MAE (MW) RMSE (MW) MAPE (%) 

ETS 59.7 78.4 6.7 

SARIMA (best on Val) 56.2 74.9 6.3 

ANN 37.2 ± 1.9 52.8 ± 2.5 4.0 ± 0.3 

GA-ANN 32.1 ± 1.4 47.3 ± 1.8 3.4 ± 0.2 

Fuzzy-ANN 26.9 ± 1.1 40.2 ± 1.5 2.7 ± 0.2 

Fuzzy-GA-ANN (Proposed) 21.4 ± 0.9 34.8 ± 1.2 2.1 ± 0.1 

 
(c) 𝒉 = 𝟐𝟒(24-hour ahead / day-ahead) 

Model MAE (MW) RMSE (MW) MAPE (%) 

ETS 150.8 160.5 9.4 

SARIMA (best on Val) 132.4 142.1 8.9 

ANN 86.9 ± 3.7 98.7 ± 4.5 5.6 ± 0.3 

GA-ANN 75.4 ± 2.9 88.1 ± 3.6 4.8 ± 0.2 

Fuzzy-ANN 63.8 ± 2.2 74.5 ± 2.8 3.7 ± 0.2 

Fuzzy-GA-ANN (Proposed) 52.6 ± 1.8 61.2 ± 2.1 2.8 ± 0.1 

 

Across all horizons, ANN-based approaches substantially outperform ETS and SARIMA, 

confirming that short-term load dynamics in the Java–Bali system cannot be adequately 

captured by linear or semi-linear temporal models alone. The performance gap widens as the 

forecast horizon increases, reflecting the compounded effects of weather variability, 

behavioral patterns, and nonlinear demand responses that are particularly pronounced in 

tropical power systems. 

Notably, for the operationally critical day-ahead horizon (ℎ = 24), the proposed Fuzzy-

GA-ANN achieves a MAPE of approximately 2.8%, representing a substantial improvement 

over both statistical baselines and standalone ANN models. 
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3.3 Ablation Study: Contribution of Fuzzy Features and GA Optimization 

The ablation study (Section 2.8) provides insight into the individual and joint 

contributions of fuzzy uncertainty modeling and GA-based optimization. Three consistent 

trends emerge. 

First, adding fuzzy weather-impact features (Fuzzy-ANN vs. ANN) yields systematic 

reductions in MAE, RMSE, and MAPE across all horizons. This supports the hypothesis that 

weather–demand relationships in tropical climates are characterized by gradual transitions 

and uncertainty that are not well represented by crisp numerical inputs. 

Second, GA-based initialization (GA-ANN vs. ANN) improves both accuracy and 

generalization, particularly at longer horizons. By performing a global search over the ANN 

parameter space, GA reduces sensitivity to poor local minima associated with random 

initialization. 

Third, the full hybrid model (Fuzzy-GA-ANN) consistently outperforms both partial 

hybrids, indicating a synergistic effect. Importantly, these gains cannot be attributed solely to 

increased model complexity, as all variants share the same ANN architecture and differ only 

in uncertainty representation and optimization strategy. 

3.4 Training Stability and Robustness Across Random Seeds 

Beyond point accuracy, training stability is a critical requirement for operational 

deployment. As shown by the standard deviations reported in Table 2, GA-based models 

exhibit markedly lower variance across repeated runs compared to models trained with 

standard random initialization. 

From an operational perspective, this robustness is nontrivial: utilities routinely retrain 

forecasting models, and unstable training behavior can lead to unpredictable performance 

despite unchanged data pipelines. The reduced variance of the proposed Fuzzy-GA-ANN 

model indicates more reliable convergence behavior, supporting consistent forecasting quality 

across retraining cycles. 

3.5 Performance During Special Days and Weather Extremes 

Electricity demand in Indonesia is strongly influenced by behavioral and institutional 

factors such as weekends, public holidays, and Ramadan/Eid periods, which were explicitly 

encoded via calendar features (Section 2.2.3). During such periods, statistical baselines tend to 

exhibit pronounced error spikes due to limited flexibility in capturing regime shifts. 

In contrast, the proposed hybrid model maintains comparatively stable performance. The 

ANN captures nonlinear interactions between lagged load and calendar effects, while the 

fuzzy weather module acts as a soft regularizer by mapping abrupt meteorological variations 

into linguistically meaningful regimes (e.g., transitions between medium and high humidity). 

This mechanism is particularly effective under tropical conditions characterized by high 

humidity and variable rainfall. 
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Figure 2. Actual versus predicted load for a representative week (h = 24) 

 

 
Figure 3. Distribution of APE for day-ahead forecasting (h = 24) 

 

3.6 Statistical Significance of Forecast Improvements 

To assess whether the observed improvements are statistically meaningful, forecast error 

sequences were compared using the Diebold–Mariano (DM) test for each horizon. For all 

horizons (ℎ = 1,6,24), the null hypothesis of equal predictive accuracy is rejected when 

comparing the proposed Fuzzy-GA-ANN against both ANN and SARIMA, typically at 

significance levels of 𝑝 < 0.01. 

The use of horizon-specific DM tests accounts for temporal dependence in forecast errors 

and avoids overly optimistic conclusions based solely on aggregate error metrics. 

3.7 Computational Cost and Deployment Considerations 

The proposed framework incurs higher computational cost during training due to GA 

optimization. However, this overhead is confined to the offline training phase and can be 

amortized through scheduled retraining (e.g., monthly or quarterly). Importantly, inference 

time remains comparable to that of a standard ANN, as fuzzy feature computation and ANN 

forward passes are computationally lightweight. 
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From a system operation perspective, the improved accuracy—particularly for day-ahead 

forecasting—supports more reliable unit commitment, reserve allocation, and demand-side 

management, with potential reductions in balancing costs and operational risk. 

3.8 Discussion 

The empirical results yield several insights into short-term load forecasting for a tropical, 

climate-sensitive power system (Java–Bali interconnected grid) and help position the 

proposed framework within the broader STLF literature. First, the consistent performance gap 

between statistical baselines (ETS and SARIMA) and ANN-family models across horizons 

supports prior evidence that linear or quasi-linear time-series models often struggle to 

represent nonlinear demand responses arising from the interaction of meteorology, calendar-

driven behavior, and evolving consumption patterns [6], [8]. Although SARIMA can remain 

competitive at very short horizons due to strong daily/weekly seasonality, its relative 

degradation at longer horizons (notably ℎ = 6 and ℎ = 24) highlights the limitations of fixed 

seasonal structures under high tropical weather variability and regime shifts associated with 

holidays and Ramadan/Eid periods. 

Second, the ablation results demonstrate that incorporating the fuzzy weather-impact 

feature improves forecasting performance beyond a standard ANN using crisp meteorological 

inputs. This finding aligns with studies emphasizing fuzzy partitioning and linguistic 

modeling as effective mechanisms to represent uncertainty in climate-driven energy 

forecasting [18], [19]. In this work, the fuzzy inference system functions as an uncertainty-

aware compression layer that transforms continuous weather signals into interpretable 

regimes, which is particularly relevant in tropical settings where the load response to 

temperature and humidity typically changes gradually rather than abruptly. Practically, the 

fuzzy feature improves robustness during high-variability weather periods and reduces 

sensitivity to noisy meteorological signals. 

Third, GA-based optimization contributes not only to accuracy but also to training 

stability, as evidenced by the reduced variability (standard deviation) of error metrics across 

repeated runs (𝑅 = 10). This result is consistent with prior work on metaheuristic-enhanced 

neural forecasting, where global search helps mitigate sensitivity to random initialization and 

local minima [16], [17]. From an operational standpoint, stability is critical because utilities 

retrain forecasting models periodically; a method that yields consistent performance across 

runs reduces operational risk and simplifies deployment. Importantly, these stability gains are 

achieved with a relatively lightweight ANN backbone, maintaining a favorable accuracy–

complexity balance compared with more computationally demanding deep architectures 

reported in recent STLF studies [25], [26]. Notably, the aim here is not to claim superiority over 

all deep learning models, but to show that strong and reliable performance can be obtained in 

the Indonesian setting with a hybrid soft computing design that remains more transparent and 

easier to tune. 

Compared with recent hybrid soft computing frameworks, the proposed Fuzzy–GA–

ANN model achieves competitive performance while preserving interpretability through 

fuzzy membership functions and rules. While neuro-fuzzy systems optimized via 

evolutionary algorithms have shown promise in prior studies [23], many evaluations remain 

concentrated in temperate or high-income contexts. The present results extend this line of 

evidence to a large-scale tropical developing-economy power system, contributing to the 

external validity of hybrid forecasting approaches under distinct climatic and socio-economic 

conditions [28]. 
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Methodologically, the findings indicate that the largest gains at longer horizons 

(especially ℎ = 24) are driven less by increasing model depth and more by combining (i) 

uncertainty-aware input representation (fuzzy weather-impact features) and (ii) robust 

parameter initialization (GA). This observation complements recent critiques warning against 

over-reliance on increasingly complex forecasting architectures without commensurate gains 

in interpretability, validation rigor, and deployment feasibility [11], [13]. In this sense, the 

proposed framework occupies a practical middle ground between classical statistical models 

and deep black-box predictors by jointly improving accuracy, robustness, and stability. 

Finally, several limitations should be acknowledged. The study focuses on the Java–Bali 

interconnected system; although meteorological inputs are aggregated using population-

weighted multi-station data to improve spatial consistency, spatial heterogeneity within the 

region may still affect performance. In addition, the evaluation is based on point forecasts; 

future work should extend the framework to probabilistic forecasting and uncertainty 

quantification for risk-aware operational planning. Overall, the results suggest that hybrid soft 

computing architectures are particularly well suited for tropical, rapidly evolving power 

systems where uncertainty, nonlinearity, and training stability jointly determine forecasting 

effectiveness. 

4. CONCLUSION 

This study presented a hybrid soft computing framework for short-term load forecasting 

in Indonesia’s Java–Bali interconnected power system using hourly data (2013–2023). The 

proposed Fuzzy–GA–ANN model was designed to jointly address (i) nonlinear climate-

sensitive demand behavior, (ii) uncertainty in weather–demand interactions, and (iii) ANN 

training instability. The framework combines a Mamdani-type fuzzy inference system (27 

rules; Gaussian membership functions) to generate an uncertainty-aware weather-impact 

feature, a feedforward ANN as the nonlinear predictor, and a Genetic Algorithm to provide 

robust parameter initialization prior to gradient-based fine-tuning. Performance was 

evaluated under a direct multi-horizon setting (ℎ ∈ {1,6,24}), using leakage-safe chronological 

splits and repeated runs to quantify training stability. 

Empirical results on the unseen test year (2023) demonstrate that the proposed model 

consistently outperforms statistical baselines (ETS and SARIMA) and ANN-family baselines 

across all horizons. The gains are most pronounced at longer horizons where uncertainty 

accumulates and robust learning becomes critical. In particular, for the operationally 

important day-ahead horizon (ℎ = 24), the proposed model achieved MAPE ≈ 2.8%, 

improving upon ANN (≈ 5.6%), Fuzzy-ANN (≈ 3.7%), and SARIMA (≈ 8.9%). The ablation 

study confirms that (i) fuzzy weather-impact representation and (ii) GA-based optimization 

contribute complementary benefits, with the full hybrid delivering the best accuracy and the 

most stable training behavior. Consistent with the stability analysis (mean ± standard 

deviation over repeated runs), GA-based variants exhibit reduced sensitivity to initialization, 

an operationally important property for periodic retraining in utility environments. Where 

applied, forecast comparison testing (e.g., Diebold–Mariano) supports that the improvements 

are statistically significant rather than incidental. 

From a practical perspective, the results indicate that high-performing STLF in tropical 

systems does not necessarily require increasingly complex deep architectures; instead, 

combining uncertainty-aware feature representation with robust global optimization can 

yield strong accuracy, improved reproducibility, and a favorable accuracy–complexity trade-
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off. This makes the proposed framework suitable for deployment as a decision-support tool 

for dispatch, reserve planning, and demand-side management in climate-sensitive grids. 

Several limitations motivate future work. First, the study focuses on an aggregated Java–

Bali system load; finer spatial granularity (e.g., province/city feeders) could further clarify 

locality-specific weather impacts. Second, meteorological inputs are regionally aggregated; 

incorporating spatially resolved weather fields or hierarchical aggregation may improve 

robustness during localized extremes. Third, this work emphasizes point forecasting; 

extending the approach to probabilistic forecasting and uncertainty quantification would 

better support risk-aware operations. Finally, future studies should evaluate broader 

benchmark sets (e.g., gradient boosting and modern sequence models) and investigate 

online/continual learning to handle concept drift driven by electrification trends and evolving 

consumption behavior. 
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