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ABSTRACT - Accurate and robust short-term electricity load forecasting is essential for reliable power
system operation, particularly in tropical regions where demand is strongly influenced by nonlinear
consumption patterns and weather-induced uncertainty. Conventional statistical models often struggle
to capture these characteristics, while standalone neural networks may suffer from training instability
and sensitivity to initialization. This study proposes a hybrid soft computing framework that integrates
fuzzy logic-based weather uncertainty representation, genetic algorithm-driven optimization, and
artificial neural networks (Fuzzy-GA-ANN) for short-term load forecasting. The fuzzy component
provides an uncertainty-aware abstraction of meteorological effects, while the genetic algorithm
enhances training robustness by mitigating local minima and initialization sensitivity. The framework
is evaluated using a large-scale hourly load dataset from the Java—Bali interconnected power system,
covering multiple operational horizons (1-hour, 6-hour, and day-ahead). Experimental results
demonstrate that the proposed model consistently outperforms classical statistical baselines (ETS and
SARIMA) and ANN-based variants across all horizons. The most significant improvements are
observed for day-ahead forecasting, where the proposed approach achieves substantially lower
forecasting errors and improved training stability. These findings indicate that combining uncertainty-
aware feature representation with robust optimization yields reliable and operationally viable
forecasting performance in climate-sensitive power systems.
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Kerangka Hibrida Fuzzy—Genetic Algorithm-Neural Network untuk
Peramalan Beban Listrik Jangka Pendek yang Andal pada Sistem
Tenaga Listrik Tropis

ABSTRAK - Peramalan beban listrik jangka pendek yang akurat dan andal merupakan elemen kunci
dalam mendukung operasi sistem tenaga listrik, khususnya di wilayah tropis yang ditandai oleh pola
konsumsi nonlinier dan ketidakpastian akibat faktor cuaca. Model statistik konvensional sering kali
memiliki keterbatasan dalam merepresentasikan karakteristik tersebut, sementara jaringan saraf tiruan
tunggal rentan terhadap ketidakstabilan pelatihan dan sensitivitas terhadap inisialisasi parameter.
Penelitian ini mengusulkan sebuah kerangka soft computing hibrida yang mengintegrasikan
representasi ketidakpastian cuaca berbasis logika fuzzy, optimasi menggunakan algoritma genetika,
dan jaringan saraf tiruan (Fuzzy-GA-ANN) untuk peramalan beban listrik jangka pendek. Komponen
fuzzy berfungsi untuk menangkap ketidakpastian pengaruh meteorologis secara gradual, sedangkan
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algoritma genetika meningkatkan robustitas pelatihan dengan mengurangi risiko terjebak pada
minimum lokal. Evaluasi dilakukan menggunakan data beban listrik per jam skala besar dari sistem
interkoneksi Jawa-Bali pada beberapa horizon operasional, yaitu 1 jam, 6 jam, dan satu hari ke depan.
Hasil eksperimen menunjukkan bahwa model yang diusulkan secara konsisten mengungguli model
statistik klasik (ETS dan SARIMA) serta berbagai varian jaringan saraf tiruan pada seluruh horizon
peramalan. Peningkatan kinerja paling signifikan terjadi pada peramalan satu hari ke depan, di mana
model hibrida menunjukkan kesalahan peramalan yang lebih rendah dan stabilitas pelatihan yang lebih
baik. Temuan ini menegaskan bahwa integrasi representasi ketidakpastian dan optimasi yang robust
merupakan pendekatan yang efektif dan layak secara operasional untuk peramalan beban listrik pada
sistem tenaga listrik yang sensitif terhadap kondisi iklim.

KATA KUNCI: Peramalan Beban Jangka Pendek, Logika Fuzzy, GA, ANN, Sistem Tenaga Tropis
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1. INTRODUCTION

Accurate short-term electricity demand forecasting—typically ranging from hour-ahead
to day-ahead horizons—is a core requirement for reliable power system operation. It directly
supports economic dispatch, reserve allocation, outage planning, and short-term
infrastructure utilization decisions, while also informing sustainable energy policy design. In
developing economies, forecasting complexity is amplified by rapid urbanization, economic
growth, and evolving consumption behavior that jointly induce nonstationary and highly
volatile demand patterns. Indonesia exemplifies these conditions: as an archipelagic tropical
country, its electricity demand is strongly shaped by climate variability, where changes in
temperature, humidity, and rainfall can materially alter cooling-related consumption and
sectoral load dynamics, complicating operational planning and increasing the risk of
imbalance.

The need for robust forecasting in Indonesia is further reinforced by structural energy-
transition trends. Long-term projections indicate that Indonesia’s total energy demand could
increase substantially toward 2060, alongside a shift toward higher electrification [1]. In the
medium term, peak electricity demand is projected to grow rapidly, with air-conditioning
adoption emerging as a major driver; efficiency policies for appliances and lighting could
partially mitigate peak growth and defer grid investment [2]. These trajectories create a clear
operational imperative: utilities and system operators require forecasting models that remain
accurate under demand growth, weather-driven variability, and evolving consumption
structures.

Forecasting research in Indonesia has therefore spanned from classical time-series
approaches to modern Al-based models. Traditional statistical methods such as ARIMA and
exponential smoothing remain widely applied due to their simplicity and interpretability, and
they can be effective under relatively stable patterns or specific long-horizon planning contexts
[3], [4], [5]. However, when demand becomes highly climate-sensitive and structurally
nonstationary, purely statistical models are often limited by assumptions of linearity and
stationarity [6], [7]. To address this, machine learning and deep learning approaches—
including gradient boosting, neural networks, and ensemble methods—have gained
prominence because they can learn nonlinear relationships and integrate exogenous drivers
such as meteorology [8], [9], [10]. Nevertheless, multiple reviews caution that data-driven
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models may impose practical barriers for operational adoption, including sensitivity to
hyperparameters and initialization, computational cost, reduced interpretability, and
overfitting risk under imperfect data quality [11], [12]. Recent methodological discussions also
highlight the importance of rigorous statistical validation to avoid overstated performance
claims and improve the credibility of data-driven energy modeling for planning and policy
[13].

Among Al techniques, Artificial Neural Networks (ANNSs) are extensively studied for
short-term load forecasting because they can approximate complex nonlinear mappings
between historical load and external drivers [14], [15]. Yet, standard ANN training is often
unstable: performance can vary across runs due to sensitivity to initial weights and local
minima, and effective deployment typically requires substantial tuning and careful
regularization to avoid overfitting [15], [16]. Metaheuristic optimization has been explored as
a remedy —for example, swarm-based methods for improving initialization and convergence
stability —indicating that optimization-enhanced ANN frameworks can yield more reliable
forecasting behavior [17].

In parallel, Fuzzy Logic (FL) provides a complementary paradigm for climate-sensitive
demand modeling by representing uncertainty and gradual transitions through linguistic
variables and interpretable rules [18], [19]. This interpretability is valuable when
meteorological effects on demand are inherently “soft” (e.g., the practical boundary between
“warm” and “hot” conditions). However, conventional fuzzy systems may depend heavily on
expert-designed membership functions and rule bases, which can hinder scalability and
adaptability under evolving data distributions and large-scale datasets [19], [20]. Recent deep-
fuzzy and hybrid fuzzy architectures attempt to improve adaptability [21], [22], yet their
performance and deployment trade-offs remain context-dependent, particularly under
tropical climate volatility.

Hybrid soft computing models that integrate ANN, fuzzy inference, and evolutionary
optimization offer a principled way to combine complementary strengths: nonlinear learning
(ANN), uncertainty representation (FL), and global search for robust parameter initialization
(Genetic Algorithms/GA). GA is especially attractive for mitigating ANN sensitivity to
initialization by exploring the global weight space and reducing premature convergence [23].
Prior studies report that hybridized frameworks—including neuro-fuzzy and evolutionary-
optimized variants—can improve robustness and accuracy in energy forecasting tasks under
nonlinear dynamics [24], [25], [26], [27]. However, much of the empirical evidence is still
concentrated in non-tropical or temperate settings and does not sufficiently clarify
generalizability under tropical developing-economy characteristics (e.g., humidity-driven
cooling demand, rainfall-related behavioral changes, and rapidly evolving load profiles). This
leaves a practical gap for Indonesia, where climate sensitivity and demand growth jointly
challenge model stability and real-world applicability [28].

Accordingly, this study develops and evaluates a hybrid soft computing framework for
short-term electricity demand forecasting in Indonesia by integrating ANN, Fuzzy Logic, and
GA. The objectives are to: (i) improve ANN convergence stability and reduce initialization
sensitivity via GA-based optimization, (ii) incorporate fuzzy inference to explicitly represent
uncertainty in weather-demand relationships, and (iii) systematically benchmark the
proposed hybrid model against conventional statistical methods and standalone intelligent
models using real-world Indonesian electricity demand and meteorological data. The main
contributions are threefold: (1) a GA-optimized neuro-fuzzy forecasting architecture tailored
to Indonesia’s tropical, climate-sensitive demand characteristics; (2) a comprehensive
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comparative evaluation emphasizing not only accuracy but also training stability and
generalization; and (3) empirically grounded deployment insights regarding the accuracy-
complexity trade-off relevant to operational forecasting in developing power systems.

2. RESEARCH METHODS

2.1 Overview of the Proposed Forecasting Framework

This study develops a hybrid soft computing framework for short-term load forecasting
(STLF) by integrating Fuzzy Logic (FL), Genetic Algorithms (GA), and an Artificial Neural
Network (ANN). The proposed framework is designed to address three recurring challenges
in climate-sensitive power systems: (i) nonlinear demand dynamics, (ii) uncertainty and
gradual transitions in weather—-demand relationships, and (iii) ANN training instability due
to sensitivity to weight initialization and local minima.

Figure 1 summarizes the end-to-end pipeline. Hourly load and meteorological variables
are first cleaned, temporally aligned, and scaled. A Mamdani-type fuzzy inference system
(FIS) transforms weather conditions into an uncertainty-aware weather-impact feature u;. The
ANN serves as the main nonlinear predictor, learning from lagged load, calendar indicators,
weather variables, and fuzzy weather-impact features. GA then performs global optimization
over ANN parameters (weights and biases) to obtain a robust initialization, followed by
gradient-based fine-tuning. Performance is evaluated using accuracy metrics and training
stability indicators, and compared to statistical baselines (ETS and SARIMA) and ablation
variants (ANN, Fuzzy-ANN, GA-ANN, and Fuzzy-GA-ANN).
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Figure 1. Proposed hybrid Fuzzy—GA-ANN framework
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2.2 Data Description and Preprocessing

2.2.1. Target load series

The target variable y; is the Java-Bali interconnected system load (MW) recorded
at hourly resolution from 2013 to 2023. The raw period spans 4,017 days, corresponding to T =
96,408 hourly timestamps. Minor missing segments (if any) are handled through time-
consistent imputation (Section 2.2.4), preserving a continuous hourly timeline.

Scope note and limitation: The Java—Bali interconnected grid accounts for a large portion of
Indonesia’s electricity demand and is operationally meaningful for dispatch. However, it is
still an aggregated system-level series and does not fully represent heterogeneous demand
patterns across other islands; hence, generalization beyond Java-Bali should be interpreted
cautiously.

2.2.2. Meteorological variables and spatial aggregation

Meteorological inputs are obtained from BMKG and include station-
level temperature T; ¢, relative humidity H;,, and rainfall R; ; from m stations representative
of the Java—Bali region. To match the spatial scale of a system-level load series, station weather
is aggregated into regional signals using population-weighted averaging:

m
Tt = Z a; T, I:It = Z a; H,;,, Rt = a;R;,, (1)

i=1 i=1 i=1

where a; > 0 and Y%, a; = 1. Population weights a; are computed from official statistics
(e.g., BPS) linked to station catchment areas. The final weather vector is w, = [T}, H;, R, ].

2.2.3. Calendar features (behavioral and institutional effects)
To capture systematic temporal effects, the following calendar features are included:
e Weekend flag: weekend, € 0,1
e Public holiday flag: holiday, € 0,1 using Indonesia’s official holiday calendar
e Ramadan/Eid window flag: ramadan,id, € 0,1, set to 1 during Ramadan and within
a window around Eid (e.g., £7 days around Eid al-Fitr), capturing recurring
consumption pattern shifts.
To encode cyclical seasonality compactly, hour-of-day and day-of-week are represented
by sine/cosine transforms:

hour(t) hour(t)) )

hourgin; = sin <27‘l’ T) ,hour.os; =cos (27TT

dow(t)

dow(t)
. ) ©)

dowgin, = sin <27‘l’ ),dowcost =cos (211

2.2.4. Cleaning, imputation, and leakage-safe scaling

All variables are aligned to the hourly timeline. Missing values are imputed using time-
consistent approaches (linear interpolation for short gaps; seasonal mean/median for longer
gaps). Outliers are detected using robust statistics (e.g., IQR-based filtering) and treated when
attributable to measurement issues.

Continuous variables are normalized via min-max scaling:

e )
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where (Xpin’ Xmax) are computed only from the training set and applied unchanged to
validation and test sets to prevent information leakage.

2.2.5. Chronological split
To emulate deployment and avoid look-ahead bias, the dataset is split chronologically:
e Training: 2013-2021
e Validation: 2022
o Test: 2023

2.3 Problem Formulation, Forecast Horizons, and Feature Construction

2.3.1. Forecast horizons and direct strategy
We evaluate direct multi-horizon STLF with:

H =1,624 ®)

corresponding to 1-hour ahead, 6-hour ahead, and 24-hour ahead forecasts.
A direct strategy is used: a separate model is trained for each horizon h € H, reducing error
accumulation compared to recursive forecasting.

2.3.2. Supervised learning formulation
Let y; be the system load at time t, w, = [T, H;, R;] be aggregated weather, and c; be
calendar features. For each horizon h, the objective is:

Veen = (20 (6)

2.3.3. Lagged load features
To capture intra-day and weekly seasonality within a feedforward ANN, lagged load
features are constructed as:

lag _
v = [yt—l’yt—z’ o Yoy yt—168] @)

(i.e., the previous 24 hours plus the same hour in the previous week).
The baseline ANN input is:

Xt = [ytag'wtt Ct] )

The final hybrid input augments x, with a fuzzy weather-impact feature u, (Section 2.4):

zp =[x, u,] 9)
2.4 Fuzzy Logic Module (Uncertainty-Aware Weather Representation)

2.4.1. Fuzzification

A Mamdani-type FIS is used to model uncertainty and gradual transitions in tropical
weather conditions. Each weather variable T}, H;, and R, is mapped into three linguistic
terms: Low, Medium, High, using Gaussian membership functions:

pa(x) = exp(—(x = ©)*/(20%)) (10)
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To ensure reproducibility and reduce subjective tuning, membership centers c are
determined from training-data quantiles (e.g., 20th/50th/80th percentiles), and spreads o are
set from intra-quantile distances.

2.4.2. Rule base and inference
A compact rule base is constructed via grid partitioning. With 3 fuzzy sets per input and
3 inputs, the system uses:

N‘rules = 33 =27 (11)

Rules follow:
o IFTisAAND H is B AND R is C THEN WeatherImpact is D.
The AND operator uses the minimum t-norm; aggregation uses the maximum operator.

2.4.3. Defuzzification
The fuzzy output WeatherImpact is converted into a crisp scalar u; via centroid
defuzzification:
o = [7EO dy
J v dy
This u; is appended to ANN inputs to provide an uncertainty-aware weather feature.

(12)

2.5 ANN Predictor (Nonlinear Learning Core)

A feedforward ANN (multilayer perceptron) serves as the main nonlinear predictor:
Veen = ANNy (245 03) (13)

where 0, denotes weights and biases for horizon h. The ANN uses two hidden layers
with ReLU activation and a linear output layer. Parameters are trained by minimizing mean
squared error (MSE) with early stopping on validation loss:

N
1
mi@r}ll Nz(yt+h - yt+h)2 (14)
t=1
2.6 Genetic Algorithm Optimization for ANN Initialization

GA is employed to mitigate ANN sensitivity to random initialization and local minima by
globally searching for a strong initial parameter set prior to backpropagation.

2.6.1. Encoding
Each chromosome encodes a flattened, real-valued vector of ANN parameters:

chromosome = [64,0,, ..., 0] (15)

2.6.2. Fitness function
Fitness is computed on the validation set to promote generalization:

1
Fi e —— =1 -6
itness(0) RMSE, (0) + ¢’ € 0 (16)
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2.6.3. Operators and termination

GA uses tournament selection (size k = 3), crossover probability p, = 0.8, Gaussian
mutation probability p,, = 0.05 (with mutation scale o = 0.1), elitism e = 2, and terminates
after G = 100 generations or when fitness stagnates.

2.7 Hybrid Training Procedure

Algorithm 1: Training and evaluation of the Fuzzy-GA-ANN framework

Input: Load series L; station weather W; calendar features C; horizons H
Output: Forecasts J; accuracy and stability metrics
1. Chronological split: Train (2013-2021), Val (2022), Test (2023).

2. Weather aggregation: Compute w; using population weights w;.

3. Preprocessing (Train only): Compute imputation and min-max scaling; apply to
Train/Val/Test.
lag,

4. Feature construction: Build y,“; compute calendar features c;; form x, = [yiag,wt,ct].
5. FIS setup: Define Gaussian memberships u,(x) for x; (Low/Med/High); generate 27 rules.
6. Fuzzy feature: Compute u; via centroid defuzzification; form z, = [x;u.].
7. For each horizon h € H:
7.1 Create targets y:., on Train/Val/Test.
7.2 Initialize GA population P with real-valued genes.
7.3 For generations g =1 ..G:
e Evaluate chromosome p € P: set ANN parameters and compute MSE,,; .
e Compute fitness f =1/(1+ MSE,y).
e Apply selection, crossover, Gaussian mutation, and elitism.
7.4 Select best chromosome p*.
7.5 Fine-tune ANN initialized with p* using Adam + early stopping — Model M,.

7.6 Evaluate M, on Test to produce y;ij.

8. Repeat for N random seeds; report mean + std; apply statistical comparison tests.

2.8 Baselines and Ablation Study

2.8.1. Statistical baselines (ETS and SARIMA)
To benchmark against standard interpretable methods:
o ETS (Exponential Smoothing): model form selected via AICc.
e SARIMA: used as the primary time-series baseline (instead of non-seasonal ARIMA).
Seasonal periods are selected to reflect hourly load seasonality; models with s =
24 (daily) and s = 168 (weekly) are evaluated and selected using validation
performance and information criteria.

2.8.2. Ablation variants (ANN-family)

To isolate the contribution of fuzzy uncertainty modeling and GA optimization, four
ANN-family variants are evaluated under identical splits, features (where applicable), and
horizons:

1. ANN:inputx, = [yiag , W, ct] ; backpropagation with random initialization.

2. Fuzzy-ANN:input z; = [x,u.]; backpropagation only (no GA).

3. GA-ANN: input x;; GA initialization + backpropagation fine-tuning (no fuzzy).
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4. Fuzzy-GA-ANN (Proposed): input z,; GA initialization + backpropagation fine-
tuning.
This ablation design supports causal attribution of gains to: (i) fuzzy weather
representation, (ii) GA-based robust optimization, and (iii) their synergy.

2.9 Experimental Protocol and Reproducibility

Because ANN training is stochastic, all ANN-based models (ANN, Fuzzy-ANN, GA-
ANN, Fuzzy-GA-ANN) are trained for R = 10 independent runs using different random
seeds. Results are reported as mean * standard deviation, quantifying training stability and
initialization sensitivity. Hyperparameter tuning is performed exclusively on the validation
year (2022); the test year (2023) is used only for final reporting.

2.10 Evaluation Metrics

Forecast accuracy is evaluated using MAE, RMSE, and MAPE:
N

1
MAE = =" 1Yeun = Jeun | a7)
t=1
1 N
RMSE = |5 (Jeon = Peen)? (18)
t=1
N
100 e/
MAPE = — | Yern ~ Vern | (19)
N Yt+h
t=1

Training stability is assessed via the standard deviation of these metrics across R runs. For
rigorous forecast comparison, differences between models can be tested using a time-series
forecast accuracy test (e.g., Diebold-Mariano) on the error sequences for each horizon.

2.11 Hyperparameter Configuration

Table 1 summarizes the experimental settings for reproducibility.

Table 1. Experimental settings and hyperparameters

Component Hyperparameter Value

Data Region/load Java-Bali interconnected system load (MW)

Data Resolution Hourly

Data Period 2013-2023

Data Total timestamps T = 96,408

Split Train / Val / Test 2013-2021 / 2022 / 2023

Forecasting Horizons H {1» 6 24} (direct models)

Features Load lags {1..24 168}

Features Weather T, H, R, (multi-station population-weighted)

Features Calendar hour_sin, hour_cos, dow_sin, dow_cos, weekend, holiday,
ramadan_eid

Fuzzy FIS type Mamdani

Fuzzy Sets per weather input 3 (Low/Medium/High)

Fuzzy Membership Gaussian (quantile-based; fit on Train)
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Fuzzy Rule base 27 rules
Fuzzy Defuzzification Centroid
ANN Architecture MLP (2 hidden layers)
ANN Hidden units [64, 32]
ANN Activation ReLU (hidden), Linear (output)
ANN Dropout 0.1
ANN L2 regularization 1x10°°
ANN Optimizer Adam
ANN Learning rate 1x1073
ANN Batch size 256
ANN Max epochs 200
ANN Early stopping 20
patience
GA Population P 50
GA Generations G 100
GA Tournament size k 3
GA Crossover p, 0.8
GA Mutation p,, 0.05
GA Mutation Gaussian (o = 0.1)
GA Elitism 2
Robustness Repeated runs R 10
Baselines Statistical ETS, SARIMA (seasonal s = 24 and s = 168; selected on Val)

3. RESULTS AND DISCUSSION

3.1 Experimental Setup and Model Selection (Validation Year 2022)

All experiments follow the chronological split defined in Section 2 (Train: 2013-2021,
Validation: 2022, Test: 2023) using the hourly Java-Bali interconnected system load (T =
96,408 timestamps). Forecasting performance is evaluated under a direct multi-horizon STLF
setting with forecast horizons H = {1,6,24}, corresponding to intra-hour, intra-day, and day-
ahead operational scenarios.

For all ANN-based models, results are reported as mean + standard deviation over R =
10independent training runs with different random seeds. This protocol explicitly accounts
for stochastic variability in neural network training and enables a robust assessment of model
stability and reproducibility.

For the SARIMA baseline, seasonal structures reflecting hourly load periodicities were
considered, with seasonal lengths s = 24(daily) and s = 168(weekly). The configuration
yielding the lowest validation error in 2022 was selected for evaluation on the unseen test year
(2023). For ETS, the model form was automatically selected using the Akaike Information
Criterion corrected for small samples (AICc).

Reproducibility note: All models use identical feature availability, the same chronological
data split, and leakage-safe preprocessing. Scaling parameters are computed exclusively from
the training period and applied unchanged to validation and test sets.

3.2 Forecast Accuracy Across Horizons

Table 2 reports forecasting performance on the unseen test set (2023) for all models,
including statistical baselines (ETS, SARIMA), ANN-family baselines (ANN, GA-ANN,
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Fuzzy-ANN), and the proposed hybrid model (Fuzzy-GA-ANN). Accuracy is evaluated using
MAE, RMSE, and MAPE as defined in Section 2.10.

Table 2. Test-set forecasting performance (2023) across horizons
(a) h = 1(1-hour ahead)

Model MAE (MW) RMSE (MW) MAPE (%)
ETS 40.8 53.6 4.6
SARIMA (best on Val) 38.9 51.2 4.2
ANN 247+1.3 349+1.8 26+0.2
GA-ANN 21.6+0.9 31.5+1.2 22+0.1
Fuzzy-ANN 18.9+£0.8 28.2+1.0 1.8+0.1
Fuzzy-GA-ANN (Proposed) 16.3+0.6 25.7+0.8 1.5+0.1

(b) h = 6(6-hour ahead)

Model MAE (MW) RMSE (MW) MAPE (%)
ETS 59.7 784 6.7
SARIMA (best on Val) 56.2 749 6.3
ANN 372+19 52.8+25 40+0.3
GA-ANN 321+14 473+1.8 3.4+02
Fuzzy-ANN 269+1.1 40.2+1.5 27+0.2
Fuzzy-GA-ANN (Proposed) 21.4+0.9 34.8+1.2 2101

(c) h = 24(24-hour ahead / day-ahead)

Model MAE (MW) RMSE (MW) MAPE (%)
ETS 150.8 160.5 9.4
SARIMA (best on Val) 132.4 142.1 8.9
ANN 86.9+3.7 98.7+4.5 56+0.3
GA-ANN 754+29 88.1+3.6 48+0.2
Fuzzy-ANN 63.8+22 745+28 3.7+0.2
Fuzzy-GA-ANN (Proposed) 52.6 +1.8 61.2+2.1 2.8+0.1

Across all horizons, ANN-based approaches substantially outperform ETS and SARIMA,
confirming that short-term load dynamics in the Java-Bali system cannot be adequately
captured by linear or semi-linear temporal models alone. The performance gap widens as the
forecast horizon increases, reflecting the compounded effects of weather variability,
behavioral patterns, and nonlinear demand responses that are particularly pronounced in
tropical power systems.

Notably, for the operationally critical day-ahead horizon (h = 24), the proposed Fuzzy-
GA-ANN achieves a MAPE of approximately 2.8%, representing a substantial improvement
over both statistical baselines and standalone ANN models.
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3.3 Ablation Study: Contribution of Fuzzy Features and GA Optimization

The ablation study (Section 2.8) provides insight into the individual and joint
contributions of fuzzy uncertainty modeling and GA-based optimization. Three consistent
trends emerge.

First, adding fuzzy weather-impact features (Fuzzy-ANN vs. ANN) yields systematic
reductions in MAE, RMSE, and MAPE across all horizons. This supports the hypothesis that
weather—-demand relationships in tropical climates are characterized by gradual transitions
and uncertainty that are not well represented by crisp numerical inputs.

Second, GA-based initialization (GA-ANN vs. ANN) improves both accuracy and
generalization, particularly at longer horizons. By performing a global search over the ANN
parameter space, GA reduces sensitivity to poor local minima associated with random
initialization.

Third, the full hybrid model (Fuzzy-GA-ANN) consistently outperforms both partial
hybrids, indicating a synergistic effect. Importantly, these gains cannot be attributed solely to
increased model complexity, as all variants share the same ANN architecture and differ only
in uncertainty representation and optimization strategy.

3.4 Training Stability and Robustness Across Random Seeds

Beyond point accuracy, training stability is a critical requirement for operational
deployment. As shown by the standard deviations reported in Table 2, GA-based models
exhibit markedly lower variance across repeated runs compared to models trained with
standard random initialization.

From an operational perspective, this robustness is nontrivial: utilities routinely retrain
forecasting models, and unstable training behavior can lead to unpredictable performance
despite unchanged data pipelines. The reduced variance of the proposed Fuzzy-GA-ANN
model indicates more reliable convergence behavior, supporting consistent forecasting quality
across retraining cycles.

3.5 Performance During Special Days and Weather Extremes

Electricity demand in Indonesia is strongly influenced by behavioral and institutional
factors such as weekends, public holidays, and Ramadan/Eid periods, which were explicitly
encoded via calendar features (Section 2.2.3). During such periods, statistical baselines tend to
exhibit pronounced error spikes due to limited flexibility in capturing regime shifts.

In contrast, the proposed hybrid model maintains comparatively stable performance. The
ANN captures nonlinear interactions between lagged load and calendar effects, while the
fuzzy weather module acts as a soft regularizer by mapping abrupt meteorological variations
into linguistically meaningful regimes (e.g., transitions between medium and high humidity).
This mechanism is particularly effective under tropical conditions characterized by high
humidity and variable rainfall.
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Figure 3. Distribution of APE for day-ahead forecasting (h = 24)

3.6 Statistical Significance of Forecast Improvements

To assess whether the observed improvements are statistically meaningful, forecast error
sequences were compared using the Diebold—Mariano (DM) test for each horizon. For all
horizons (h = 1,6,24), the null hypothesis of equal predictive accuracy is rejected when
comparing the proposed Fuzzy-GA-ANN against both ANN and SARIMA, typically at
significance levels of p < 0.01.

The use of horizon-specific DM tests accounts for temporal dependence in forecast errors
and avoids overly optimistic conclusions based solely on aggregate error metrics.

3.7 Computational Cost and Deployment Considerations

The proposed framework incurs higher computational cost during training due to GA
optimization. However, this overhead is confined to the offline training phase and can be
amortized through scheduled retraining (e.g., monthly or quarterly). Importantly, inference
time remains comparable to that of a standard ANN, as fuzzy feature computation and ANN
forward passes are computationally lightweight.
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From a system operation perspective, the improved accuracy —particularly for day-ahead
forecasting —supports more reliable unit commitment, reserve allocation, and demand-side
management, with potential reductions in balancing costs and operational risk.

3.8 Discussion

The empirical results yield several insights into short-term load forecasting for a tropical,
climate-sensitive power system (Java-Bali interconnected grid) and help position the
proposed framework within the broader STLF literature. First, the consistent performance gap
between statistical baselines (ETS and SARIMA) and ANN-family models across horizons
supports prior evidence that linear or quasi-linear time-series models often struggle to
represent nonlinear demand responses arising from the interaction of meteorology, calendar-
driven behavior, and evolving consumption patterns [6], [8]. Although SARIMA can remain
competitive at very short horizons due to strong daily/weekly seasonality, its relative
degradation at longer horizons (notably h = 6 and h = 24) highlights the limitations of fixed
seasonal structures under high tropical weather variability and regime shifts associated with
holidays and Ramadan/Eid periods.

Second, the ablation results demonstrate that incorporating the fuzzy weather-impact
feature improves forecasting performance beyond a standard ANN using crisp meteorological
inputs. This finding aligns with studies emphasizing fuzzy partitioning and linguistic
modeling as effective mechanisms to represent uncertainty in climate-driven energy
forecasting [18], [19]. In this work, the fuzzy inference system functions as an uncertainty-
aware compression layer that transforms continuous weather signals into interpretable
regimes, which is particularly relevant in tropical settings where the load response to
temperature and humidity typically changes gradually rather than abruptly. Practically, the
fuzzy feature improves robustness during high-variability weather periods and reduces
sensitivity to noisy meteorological signals.

Third, GA-based optimization contributes not only to accuracy but also to training
stability, as evidenced by the reduced variability (standard deviation) of error metrics across
repeated runs (R = 10). This result is consistent with prior work on metaheuristic-enhanced
neural forecasting, where global search helps mitigate sensitivity to random initialization and
local minima [16], [17]. From an operational standpoint, stability is critical because utilities
retrain forecasting models periodically; a method that yields consistent performance across
runs reduces operational risk and simplifies deployment. Importantly, these stability gains are
achieved with a relatively lightweight ANN backbone, maintaining a favorable accuracy-
complexity balance compared with more computationally demanding deep architectures
reported in recent STLF studies [25], [26]. Notably, the aim here is not to claim superiority over
all deep learning models, but to show that strong and reliable performance can be obtained in
the Indonesian setting with a hybrid soft computing design that remains more transparent and
easier to tune.

Compared with recent hybrid soft computing frameworks, the proposed Fuzzy-GA-
ANN model achieves competitive performance while preserving interpretability through
fuzzy membership functions and rules. While neuro-fuzzy systems optimized via
evolutionary algorithms have shown promise in prior studies [23], many evaluations remain
concentrated in temperate or high-income contexts. The present results extend this line of
evidence to a large-scale tropical developing-economy power system, contributing to the
external validity of hybrid forecasting approaches under distinct climatic and socio-economic
conditions [28].
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Methodologically, the findings indicate that the largest gains at longer horizons
(especially h = 24) are driven less by increasing model depth and more by combining (i)
uncertainty-aware input representation (fuzzy weather-impact features) and (ii) robust
parameter initialization (GA). This observation complements recent critiques warning against
over-reliance on increasingly complex forecasting architectures without commensurate gains
in interpretability, validation rigor, and deployment feasibility [11], [13]. In this sense, the
proposed framework occupies a practical middle ground between classical statistical models
and deep black-box predictors by jointly improving accuracy, robustness, and stability.

Finally, several limitations should be acknowledged. The study focuses on the Java—Bali
interconnected system; although meteorological inputs are aggregated using population-
weighted multi-station data to improve spatial consistency, spatial heterogeneity within the
region may still affect performance. In addition, the evaluation is based on point forecasts;
future work should extend the framework to probabilistic forecasting and uncertainty
quantification for risk-aware operational planning. Overall, the results suggest that hybrid soft
computing architectures are particularly well suited for tropical, rapidly evolving power
systems where uncertainty, nonlinearity, and training stability jointly determine forecasting
effectiveness.

4. CONCLUSION

This study presented a hybrid soft computing framework for short-term load forecasting
in Indonesia’s Java-Bali interconnected power system using hourly data (2013-2023). The
proposed Fuzzy—-GA-ANN model was designed to jointly address (i) nonlinear climate-
sensitive demand behavior, (ii) uncertainty in weather-demand interactions, and (iii) ANN
training instability. The framework combines a Mamdani-type fuzzy inference system (27
rules; Gaussian membership functions) to generate an uncertainty-aware weather-impact
feature, a feedforward ANN as the nonlinear predictor, and a Genetic Algorithm to provide
robust parameter initialization prior to gradient-based fine-tuning. Performance was
evaluated under a direct multi-horizon setting (h € {1,6,24}), using leakage-safe chronological
splits and repeated runs to quantify training stability.

Empirical results on the unseen test year (2023) demonstrate that the proposed model
consistently outperforms statistical baselines (ETS and SARIMA) and ANN-family baselines
across all horizons. The gains are most pronounced at longer horizons where uncertainty
accumulates and robust learning becomes critical. In particular, for the operationally
important day-ahead horizon (h = 24), the proposed model achieved MAPE = 2.8%,
improving upon ANN (= 5.6%), Fuzzy-ANN (= 3.7%), and SARIMA (= 8.9%). The ablation
study confirms that (i) fuzzy weather-impact representation and (ii) GA-based optimization
contribute complementary benefits, with the full hybrid delivering the best accuracy and the
most stable training behavior. Consistent with the stability analysis (mean + standard
deviation over repeated runs), GA-based variants exhibit reduced sensitivity to initialization,
an operationally important property for periodic retraining in utility environments. Where
applied, forecast comparison testing (e.g., Diebold—Mariano) supports that the improvements
are statistically significant rather than incidental.

From a practical perspective, the results indicate that high-performing STLF in tropical
systems does not necessarily require increasingly complex deep architectures; instead,
combining uncertainty-aware feature representation with robust global optimization can
yield strong accuracy, improved reproducibility, and a favorable accuracy—complexity trade-
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off. This makes the proposed framework suitable for deployment as a decision-support tool
for dispatch, reserve planning, and demand-side management in climate-sensitive grids.

Several limitations motivate future work. First, the study focuses on an aggregated Java—
Bali system load; finer spatial granularity (e.g., province/city feeders) could further clarify
locality-specific weather impacts. Second, meteorological inputs are regionally aggregated;
incorporating spatially resolved weather fields or hierarchical aggregation may improve
robustness during localized extremes. Third, this work emphasizes point forecasting;
extending the approach to probabilistic forecasting and uncertainty quantification would
better support risk-aware operations. Finally, future studies should evaluate broader
benchmark sets (e.g.,, gradient boosting and modern sequence models) and investigate
online/continual learning to handle concept drift driven by electrification trends and evolving
consumption behavior.
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