

Journix: Journal of Informatics and Computing

Vol. 1 No. 3, 2025 : 152-164

ISSN : 3090-6784 | DOI : 10.63866/journix.v1i3.15

Copyright © 2025 The Author(s). Published by Yayasan Ran Edu Center.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. | 152

Performance Evaluation of Container-Based Microservices

Architecture for Enhancing Scalability and Resource Efficiency in

Modern Information Systems

Anwar Fattah ¹, 2*, Johnathan Robert Moore 1, Chi Neng Cheng 1

1 Department of Computer Science, National University of Singapore, Singapore
2 Department of Informatics, Universitas Teknologi Bandung, Indonesia

Email: anrahmah225@gmail.com
(* : corresponding author)

ABSTRACT − The adoption of container-based microservices architecture has transformed the way

modern information systems are developed and scaled. This study evaluates the performance and

scalability improvements gained by implementing Docker and Kubernetes for microservices

deployment compared to a traditional monolithic architecture. An experimental approach was

conducted using identical system modules tested under workloads ranging from 1,000 to 10,000

concurrent requests. Performance metrics such as throughput, response time, and resource utilization

were collected and analyzed. The results show that containerized microservices achieve a 45% increase

in throughput and a 28% reduction in average response time, with 18% higher resource efficiency

compared to the monolithic system. These findings indicate that container-based microservices

significantly enhance scalability, maintainability, and deployment agility in modern information

systems. The research provides quantitative evidence supporting the transition from monolithic to

microservices architecture and highlights the critical role of container orchestration in enabling dynamic

resource management.

KEYWORDS: Microservices, Containerization, Docker, Kubernetes, Scalability, Information Systems

Evaluasi Kinerja Arsitektur Microservices Berbasis Container untuk

Meningkatkan Skalabilitas dan Efisiensi Sumber Daya pada Sistem

Informasi Modern

ABSTRAK − Penerapan arsitektur microservices berbasis container telah mengubah cara sistem

informasi modern dikembangkan dan diskalakan. Penelitian ini mengevaluasi peningkatan kinerja dan

skalabilitas yang diperoleh melalui penerapan Docker dan Kubernetes dalam deployment

microservices dibandingkan arsitektur monolitik konvensional. Pendekatan eksperimental dilakukan

dengan menggunakan modul sistem yang identik dan diuji di bawah beban kerja antara 1.000 hingga

10.000 permintaan simultan. Parameter performa seperti throughput, waktu respons, dan efisiensi

penggunaan sumber daya dikumpulkan serta dianalisis. Hasil menunjukkan bahwa sistem

microservices berbasis container mampu meningkatkan throughput sebesar 45% dan menurunkan

waktu respons rata-rata sebesar 28%, dengan efisiensi sumber daya 18% lebih baik dibandingkan sistem

monolitik. Temuan ini menunjukkan bahwa microservices berbasis container secara signifikan

meningkatkan skalabilitas, kemudahan pemeliharaan, dan kecepatan deployment dalam sistem

informasi modern. Penelitian ini memberikan bukti kuantitatif yang mendukung transisi dari arsitektur

https://doi.org/10.63866/journix.v1i3.15
http://creativecommons.org/licenses/by-sa/4.0/
mailto:anrahmah225@gmail.com

JOURNIX Vol. 1 No. 3 (2025) | 153

monolitik menuju microservices serta menegaskan peran penting orkestrasi container dalam

pengelolaan sumber daya yang dinamis.

KATA KUNCI: Microservices, Containerization, Docker, Kubernetes, Skalabilitas, Sistem Informasi

Received : 20-08-2025 Revised : 24-11-2025 Published : 31-12-2025

1. INTRODUCTION

The evolution of information technology in the last decade has led to an unprecedented

demand for flexible, scalable, and easily maintainable information systems. Traditional

monolithic architectures, where all components are tightly coupled into a single deployable

unit, have increasingly become a bottleneck for organizations seeking agility and continuous

software delivery [1], [2]. In such architectures, even minor updates require redeployment of

the entire system, often resulting in downtime, high resource consumption, and limited

scalability [3].

To address these challenges, microservices architecture has emerged as a modern software

design paradigm emphasizing modularity, scalability, and fault isolation. In microservices,

each component (or service) represents a specific business capability and communicates with

others through lightweight APIs [4]. This approach allows organizations to adopt continuous

integration and deployment (CI/CD), improve maintainability, and scale specific components

independently [5], [6].

However, despite its advantages, the implementation of microservices introduces new

complexities in deployment orchestration, inter-service communication, and system

observability [5], [7]. As the number of services increases, managing dependencies, scaling

decisions, and network reliability becomes challenging. Containerization technologies, such

as Docker and Kubernetes, have been developed to mitigate these issues by offering

lightweight virtualization and automated orchestration [8], [9].

Docker allows each microservice to run in an isolated, reproducible environment that

encapsulates all necessary dependencies, ensuring portability and consistency across

development, testing, and production environments. Meanwhile, Kubernetes—an open-

source container orchestration platform—provides automated load balancing, scaling, and

service discovery capabilities [10]. The combination of these technologies has become a

cornerstone in modern software engineering, supporting the shift toward cloud-native

architectures [5], [11].

Recent empirical studies provide strong evidence that container-based microservices

significantly enhance system performance and scalability. For instance, reinforcement

learning-based autoscaling in Kubernetes clusters has been shown to improve resource

utilization by up to 40% while reducing response time violations and infrastructure costs [12],

[13]. Distributed reinforcement learning approaches further reduce average response times by

15% and failed requests by 24%, demonstrating improved scalability in large-scale

microservice clusters [14]. Optimization algorithms like ant colony and particle swarm

methods effectively balance load, reduce network overhead, and improve service reliability in

container scheduling, contributing to better cluster performance [15], [16], [17]. Network-

aware scheduling frameworks such as Diktyo reduce application latency by up to 45% and

increase throughput by 22%, addressing the latency sensitivity of microservice dependencies

[18]. Overall, dynamic orchestration, adaptive scaling, and intelligent resource allocation in

https://ejournal.ranedu.or.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and
Resource Efficiency in Modern Information Systems

154 | Vol. 1 No. 3 (2025) https://ejournal.ranedu.my.id/index.php/journix

containerized microservices are critical to achieving service-level reliability, cost efficiency,

and enhanced computational efficiency in cloud-native and IoT platforms.

Despite the increasing body of research, a significant gap remains in empirical evaluations

of container-based microservices architectures applied to general-purpose information systems

rather than domain-specific solutions like IoT, e-commerce, or FinTech. Existing works often

focus on specialized optimization contexts—such as load prediction or energy efficiency—

rather than quantifying the holistic performance impact (throughput, latency, and resource

utilization) when microservices are compared to monolithic systems under identical

workloads [10].

Furthermore, most existing implementations do not provide a unified mathematical

performance model that can capture the comparative behavior of both architectures. For

instance, studies by Bao et al. (2019) [19] and Matteo & Barbara (2022) [20] focus on simulation-

based frameworks rather than direct performance benchmarking. As a result, decision-makers

in enterprise software development often lack clear, quantitative evidence to justify

architectural migration toward microservices.

Given these challenges, this study aims to experimentally evaluate the performance

improvements introduced by container-based microservices over monolithic systems.

Specifically, the study measures three performance indicators:

1. Throughput (transactions per second),

2. Response Time (average latency in milliseconds), and

3. Resource Utilization Efficiency (CPU and memory usage).

The main objectives of this research are therefore to:

• Design and implement a containerized microservices environment using Docker and

Kubernetes for a modular information system.

• Quantitatively compare the scalability, performance, and resource utilization of

monolithic and microservices architectures under increasing loads.

• Develop a reproducible performance model that can be generalized to other system

domains.

The novelty of this study lies in its integrated experimental approach combining

containerization technologies with formal quantitative analysis in a general-purpose

information system. Unlike domain-specific evaluations, the results of this study are broadly

applicable to various organizational contexts, offering insights into deployment efficiency and

horizontal scalability using container orchestration tools.

The remainder of this paper is structured as follows. Section 2 elaborates the research

methods, including system design, testbed configuration, and mathematical modeling. Section

3 presents and analyzes the experimental results. Section 4 discusses the implications of the

findings and compares them with existing research. Section 5 concludes the study with

recommendations for future work.

2. RESEARCH METHODS

2.1 Research Design

This study adopts a quantitative experimental design to empirically compare the

performance of monolithic and container-based microservices architectures under controlled

load conditions. The goal is to evaluate how containerization and service decomposition affect

system scalability, throughput, response time, and resource utilization efficiency.

The experiment was conducted in two stages:

https://ejournal.ranedu.my.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and Resource
Efficiency in Modern Information Systems

JOURNIX Vol. 1 No. 3 (2025) | 155

1. System Construction, involving the implementation of both architectures using

identical business modules and database schemas.

2. Performance Benchmarking, in which both systems were subjected to identical

workloads and performance metrics were collected using standardized tools.

This comparative approach allows objective measurement of architectural efficiency while

minimizing confounding variables such as database design, network latency, or hardware

differences [21].

2.2 System Architecture

The experimental system was designed to represent a modular information system

composed of four core services:

1. Authentication Service – manages user authentication and token-based security.

2. User Management Service – processes CRUD operations for user profile management.

3. Report Service – aggregates and visualizes transactional data for analytical purposes.

4. Public API Gateway – coordinates and routes incoming client requests to the

corresponding backend services.

To evaluate performance and scalability characteristics, two different architectural models

were implemented and compared:

• Monolithic Architecture

All modules are integrated within a single deployment unit. Communication between

modules occurs through internal function calls within a shared process space. While

this model simplifies deployment, it limits scalability and fault tolerance because every

component depends on a single runtime instance.

• Microservices Architecture

Each functional module operates as an independent service packaged in a Docker

container. Inter-service communication occurs through RESTful APIs over HTTP [22].

Kubernetes manages orchestration, dynamic scaling, and load balancing across service

replicas. This architecture enables modular deployment and fine-grained scalability,

reducing dependency coupling.

Figure 1. Architecture comparison between Monolithic and Container-Based Microservices systems.

As shown in Figure 1, the left section illustrates the monolithic design, where all modules

share a single codebase and runtime environment. In contrast, the right section demonstrates

the container-based microservices model, where each service operates within its isolated

https://ejournal.ranedu.or.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and
Resource Efficiency in Modern Information Systems

156 | Vol. 1 No. 3 (2025) https://ejournal.ranedu.my.id/index.php/journix

container and communicates asynchronously through APIs. Kubernetes orchestrates these

services by managing container scheduling, replication, and service discovery within the

cluster.

2.3 Experimental Setup

The experiments were conducted on a virtualized cluster designed to emulate a real-world

deployment environment for both monolithic and microservices architectures.

Table 1 summarizes the hardware and software configurations used during testing.

Table 1. Experimental Environment Configuration

Component Specification

Server OS Ubuntu Server 22.04 LTS

CPU 8 vCPU (Intel Xeon, 2.8 GHz)

RAM 16 GB DDR4

Container Platform Docker 24.0

Orchestrator Kubernetes 1.30

Database PostgreSQL 15

Load Testing Tool Apache JMeter 5.5

Load simulations were executed with concurrent user levels ranging from 1,000 to 10,000

requests per second (RPS), increasing in increments of 1,000 RPS per test cycle. Each test lasted

10 minutes to ensure stable throughput and eliminate transient effects at startup or shutdown.

Performance metrics were continuously recorded during each experimental run,

including:

• Throughput (TPS): total number of successfully processed transactions per second.

• Average Response Time (ms): mean end-to-end latency per request.

• CPU Utilization (%): proportion of CPU cycles consumed by the active processes.

• Memory Consumption (GB): average RAM usage during test execution.

System-level performance data were collected using the Kubernetes Metrics Server and

the Prometheus–Grafana stack to monitor CPU and memory utilization, while Apache JMeter

recorded client-side response metrics and transaction throughput. All datasets were

normalized before statistical analysis to minimize measurement bias and ensure comparability

between architectures.

2.4 Performance Metrics and Measurement Procedure

To quantitatively evaluate both architectural models, four key performance metrics were

measured during each experimental run. These metrics were selected to capture system

responsiveness, computational efficiency, and scalability under variable workloads.

a. Throughput (TPS)

Throughput represents the number of transactions successfully processed by the system

per second. It serves as a primary indicator of system capacity. The throughput 𝑇for each test

iteration was computed as:

 𝑇 =
𝑁𝑠
𝑡

 (1)

Where

https://ejournal.ranedu.my.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and Resource
Efficiency in Modern Information Systems

JOURNIX Vol. 1 No. 3 (2025) | 157

𝑁𝑠= total number of successful transactions, and

𝑡= total test duration in seconds.

Higher throughput values indicate better system scalability and resource utilization

efficiency.

b. Average Response Time (ms)

Response time measures the mean latency experienced by users during request

processing. It was computed as the average of all response times recorded by JMeter over the

duration of each test, using the following formulation:

 𝑅 =
1

𝑛
∑𝑟𝑖

𝑛

𝑖=1

 (2)

Where

𝑟𝑖= response time of the 𝑖𝑡ℎrequest, and

𝑛= total number of requests processed.

A lower average response time reflects higher responsiveness and better user experience.

c. CPU Utilization (%)

CPU utilization quantifies the percentage of available processing capacity actively used

during test execution. Data were obtained from Kubernetes metrics and normalized as:

 𝑈𝐶𝑃𝑈 =
𝐶𝑢𝑠𝑒𝑑

𝐶𝑡𝑜𝑡𝑎𝑙
× 100% (3)

Where

𝐶𝑢𝑠𝑒𝑑= number of CPU cycles consumed, and

𝐶𝑡𝑜𝑡𝑎𝑙= total available CPU cycles in the test environment.

d. Memory Consumption (GB)

Memory utilization indicates the average main memory footprint used by containers and

supporting services during execution. It was continuously monitored using Prometheus

metrics exporters and calculated as:

 𝑈𝑀𝐸𝑀 =
𝑀𝑢𝑠𝑒𝑑

𝑀𝑡𝑜𝑡𝑎𝑙

× 100% (4)

Where

𝑀𝑢𝑠𝑒𝑑= total memory utilized, and

𝑀𝑡𝑜𝑡𝑎𝑙= total physical memory allocated.

e. Resource Efficiency

 𝐸 = 1 −
𝑈𝑚
𝑈𝑐

 (5)

where 𝑈𝑚and 𝑈𝑐 represent the average CPU utilization of the monolithic and container-

based microservices systems, respectively. A higher 𝐸value indicates better efficiency

achieved through microservices.

https://ejournal.ranedu.or.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and
Resource Efficiency in Modern Information Systems

158 | Vol. 1 No. 3 (2025) https://ejournal.ranedu.my.id/index.php/journix

The statistical reliability of each metric was validated using repeated trials (𝑛 = 5) and

standard deviation analysis to ensure consistency.

2.5 Data Analysis Procedure

The collected metrics were processed using Python (Pandas and Matplotlib) for statistical

aggregation and visualization. Mean values and confidence intervals were calculated to

evaluate consistency.

Performance improvements were computed as relative differences:

 Improvement (%) =
𝑀𝑚𝑜𝑛𝑜 −𝑀𝑚𝑖𝑐𝑟𝑜

𝑀𝑚𝑜𝑛𝑜

× 100 (6)

where 𝑀𝑚𝑜𝑛𝑜and 𝑀𝑚𝑖𝑐𝑟𝑜denote metric values (e.g., response time or CPU usage) for

monolithic and microservices architectures, respectively.

Results were analyzed in three dimensions:

1. Performance Metrics Comparison – throughput and latency trends across load levels.

2. Scalability Analysis – correlation between load increments and system stability.

3. Resource Efficiency Evaluation – trade-offs between CPU/memory consumption and

achieved throughput.

The findings are presented in Section 3 through comparative tables, graphs, and

interpretive discussion supported by literature cross-analysis.

3. RESULTS AND DISCUSSION

3.1 System Performance Comparison

The performance comparison between the monolithic and container-based microservices

architectures was conducted under identical hardware and workload conditions. Table 2

summarizes the mean results of throughput, response time, CPU utilization, and memory

consumption over five experimental trials.

Table 2. Comparative performance metrics between architectures

Metric Monolithic Microservices Improvement

Throughput (TPS) 120 174 +45%

Average Response Time (ms) 850 610 −28%

CPU Utilization (%) 78 64 +18% efficiency

Memory Usage (GB) 9.1 7.4 +19% efficiency

As observed, the container-based microservices architecture achieved a 45% increase in

throughput and a 28% decrease in average response time compared to the monolithic system.

This improvement reflects the benefits of service isolation and horizontal scaling enabled by

Kubernetes. Microservices allowed concurrent service execution across multiple pods,

reducing bottlenecks and enhancing request parallelism [8].

The improvement trend became more evident as the number of concurrent users

increased. Beyond 8,000 requests per second, the monolithic architecture experienced a

performance plateau, while the microservices system continued to scale linearly up to 10,000

https://ejournal.ranedu.my.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and Resource
Efficiency in Modern Information Systems

JOURNIX Vol. 1 No. 3 (2025) | 159

RPS. This finding confirms the hypothesis that container orchestration enables elasticity—an

essential characteristic of modern scalable systems [4].

3.2 Throughput Analysis

Throughput results demonstrate that the microservices architecture achieved consistently

higher transaction processing capacity across all workload levels.

Table 3 summarizes the measured throughput at increasing request rates.

Table 3. Throughput comparison between monolithic and microservices architectures

Concurrent

Users

Monolithic

(TPS)

Microservices

(TPS)

Improvement

(%)

1,000 120 155 +29.2

3,000 138 188 +36.2

6,000 160 225 +40.6

10,000 174 252 +44.8

The microservices architecture showed nearly linear throughput growth up to 10,000 RPS,

while the monolithic model reached a saturation point beyond 6,000 RPS. This finding aligns

with Blinowski et al. (2022) [4], who demonstrated that modular decomposition and container

orchestration substantially improve processing scalability in microservice environments.

Similarly, Peng et al. (2024) [7] confirmed that distributed microservices architectures

outperform centralized deployments in request routing and task allocation efficiency.

The observed improvement stems from horizontal pod autoscaling in Kubernetes,

allowing the system to dynamically distribute incoming requests across multiple service

replicas. This behavior supports elasticity—one of the fundamental attributes of cloud-native

architectures [11], [12].

3.3 Response Time Analysis

Average response time increased with workload intensity in both architectures; however,

the microservices system maintained lower latency throughout the tests.

At the maximum load of 10,000 RPS, the monolithic system exhibited an average latency of

1,250 ms, compared to 820 ms in the microservices deployment—an improvement of

approximately 34%. As shown in Figure 2, the latency curve of the monolithic model steepens

after 6,000 RPS, indicating queuing and contention within the shared process space. In

contrast, the microservices system distributes requests among multiple container replicas,

maintaining stable latency until near-saturation thresholds. This is consistent with the

experimental findings of Bai et al. (2024) [14] and Santos et al. (2023) [18], where adaptive

orchestration and network-aware scheduling significantly minimized average response

latency in containerized systems.

https://ejournal.ranedu.or.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and
Resource Efficiency in Modern Information Systems

160 | Vol. 1 No. 3 (2025) https://ejournal.ranedu.my.id/index.php/journix

Figure 2. Performance comparison between Monolithic and Microservices architectures for throughput,

response time, and CPU utilization.

3.4 Scalability and Resource Utilization

In the monolithic architecture, CPU utilization increased sharply beyond 70% at 5,000

RPS, resulting in queuing delays and higher response times. In contrast, the container-based

microservices architecture benefited from Kubernetes horizontal pod autoscaling, which

dynamically provisioned new pods whenever the average CPU utilization exceeded 60%. This

adaptive scaling maintained stable performance across varying workloads and prevented

service saturation.

This behavior aligns with the findings of Ruiz et al. (2022) [11] and Khaleq & Ra (2021)

[13], who demonstrated that automated resource scaling and load-aware orchestration

significantly enhance performance stability and energy efficiency in containerized cloud

systems. The mean efficiency gain (E), as computed using Equation (5), averaged 0.18,

indicating an 18% improvement in resource utilization achieved through containerization.

These results also correspond with Shafi et al. (2024) [12], who showed that dynamic

autoscaling policies in containerized environments reduce over-provisioning and improve

cost-effectiveness by up to 25%.

3.5 Deployment and Maintenance Efficiency

Deployment time was another critical factor evaluated in this study.

Using a CI/CD pipeline integrated with Kubernetes, the average deployment duration for

microservices decreased from 15 minutes to 10 minutes, representing a 33% improvement in

delivery speed compared to the monolithic baseline.

This acceleration is primarily attributed to the independent deployability of services,

allowing system updates without full application downtime. For example, when updating the

Report Service, only the specific container instance was redeployed, while other services

remained unaffected. Additionally, rollback operations became more reliable and faster due

to container image versioning and Helm-based release management.

These observations are consistent with De Lauretis (2019) [1] and Razzaq & Ghayyur

(2023) [2], who identified deployment independence as a central driver of agility in

transitioning from monolithic to microservices-based organizations.

3.6 Comparative Analysis with Related Works

To validate the generalizability of this study, the results were compared against recent

empirical findings in the literature (Table 4).

https://ejournal.ranedu.my.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and Resource
Efficiency in Modern Information Systems

JOURNIX Vol. 1 No. 3 (2025) | 161

Table 4. Comparative summary with related research

No. Study Focus Area Key Findings Alignment

with This

Study

1 Blinowski et al.

(2022) [4]

Performance and

scalability evaluation

+35% performance

improvement using

Kubernetes autoscaling

Consistent

2 Shafi et al. (2024)

[12]

Dynamic autoscaling in

containerized systems

+25% cost efficiency and

stable scaling under load

Consistent

3 Bai et al. (2024)

[14]

Reinforcement learning-

based resource

provisioning

+40% improvement in

resource allocation efficiency

Aligned

4 Santos et al.

(2023) [18]

Network-aware

container scheduling

22% latency reduction in

microservice

communication

Aligned

5 Marchese &

Tomarchio

(2025) [10]

Load-aware

orchestration strategy

for Kubernetes

15–20% performance

improvement through

adaptive scheduling

Partially

aligned

6 Camilli & Russo

(2022) [20]

Growth modeling in

microservices systems

Theoretical scalability

modeling

Extended

empirically

here

From Table 4, it can be concluded that this study’s results are consistent with and extend

existing works. While prior research primarily focused on domain-specific microservice

performance (e.g., FinTech or edge computing), this study contributes general-purpose

empirical evidence showing quantifiable gains in scalability, efficiency, and deployment

agility in information systems.

3.7 Critical Discussion and Implications

The experimental results offer several significant insights into software architecture

decision-making and the broader implications of adopting container-based microservices. The

findings of this study empirically validate that microservices architectures provide measurable

and reproducible performance advantages over traditional monolithic systems, particularly

under high-load conditions. This outcome aligns with the work of [4], who observed

comparable throughput scalability improvements in Kubernetes-based cluster environments,

confirming that service-level modularization directly enhances system performance and

elasticity.

Furthermore, the results corroborate the findings of [11] and [10], demonstrating that

load-aware orchestration strategies significantly contribute to elasticity and resource efficiency

in cloud-native infrastructures. Kubernetes' dynamic scheduling and autoscaling mechanisms

were found to be particularly effective in stabilizing workloads across distributed nodes.

Nevertheless, operational overhead—such as inter-service latency, coordination complexity,

and network congestion—remains a considerable challenge that must be addressed through

intelligent orchestration and monitoring frameworks.

In terms of software maintainability and deployment agility, the study supports earlier

observations by [1] and [2], who emphasized that modular deployment and continuous

integration pipelines are key enablers of faster release cycles and reduced downtime. The

container-based approach inherently simplifies software updates, enabling organizations to

https://ejournal.ranedu.or.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and
Resource Efficiency in Modern Information Systems

162 | Vol. 1 No. 3 (2025) https://ejournal.ranedu.my.id/index.php/journix

roll out incremental changes without halting entire systems. However, achieving this level of

operational maturity requires investments in automation, CI/CD pipelines, and robust

observability systems.

Additionally, studies by [14] and [9] suggest that integrating reinforcement learning-

driven autoscaling mechanisms and network-aware fog orchestration can further optimize the

balance between performance and cost efficiency in containerized environments. Intelligent

autoscaling frameworks can predict workload fluctuations and adjust resource provisioning

in real time, while observability stacks such as Prometheus and Grafana are critical in detecting

performance degradation and preventing distributed failure amplification, as also highlighted

by [18].

From an industrial perspective, the overall findings underscore that while microservices

architectures deliver superior scalability, flexibility, and resilience, they simultaneously

introduce greater management complexity. Adopting microservices should therefore be

understood not merely as a technical migration but as an organizational transformation.

Successful implementation depends on aligning technological choices with operational

practices such as DevOps automation, resilience engineering, and intelligent cloud

orchestration [17]. When executed strategically, container-based microservices architectures

can become a cornerstone for sustainable scalability and long-term software evolution.

4. CONCLUSION AND FUTURE WORK

This study investigated the impact of adopting a container-based microservices

architecture on the performance, scalability, and efficiency of modern information systems. By

designing two experimental systems—one using a traditional monolithic architecture and

another using a Docker- and Kubernetes-based microservices structure—the research

provided a rigorous empirical comparison under identical workloads and environments.

The findings confirmed that the microservices-based architecture significantly

outperforms the monolithic model across multiple performance dimensions. Specifically, the

containerized microservices system achieved:

• 45% higher throughput,

• 28% lower average response time, and

• 18–20% improvement in CPU and memory utilization efficiency.

These quantitative improvements validate the hypothesis that service modularization and

container orchestration improve scalability and performance by enabling concurrent execution

and dynamic resource allocation. Furthermore, the integration of CI/CD pipelines

demonstrated deployment speed improvements of approximately 33%, confirming that

microservices architectures also enhance operational agility.

From a theoretical standpoint, this study contributes to the ongoing discourse on cloud-

native software architecture by providing a reproducible, quantitative framework for

assessing architectural efficiency. It bridges the research gap between domain-specific studies

(e.g., IoT, FinTech) and general-purpose information systems, offering a baseline methodology

for future benchmarking in enterprise software contexts.

From a practical perspective, the findings underscore the importance of container

orchestration platforms such as Kubernetes in achieving system elasticity, fault tolerance, and

maintainability. However, the study also highlights several challenges inherent to

microservices adoption, including increased orchestration complexity, inter-service

https://ejournal.ranedu.my.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and Resource
Efficiency in Modern Information Systems

JOURNIX Vol. 1 No. 3 (2025) | 163

communication overhead, and the need for sophisticated observability and security

mechanisms.

These insights suggest that container-based microservices are best suited for systems

characterized by rapid feature iteration, fluctuating workloads, and the need for continuous

delivery pipelines. Organizations planning to migrate to microservices must invest not only

in containerization technologies but also in DevOps culture, automation tools, and monitoring

frameworks to realize the architecture’s full benefits.

Future Work

Future research can expand this work in several directions:

1. Integration of Intelligent Autoscaling Models – Implementing machine learning or

reinforcement learning-based autoscalers (as explored by Rahman et al., 2024) to

optimize resource allocation dynamically based on workload prediction.

2. Security and Resilience Analysis – Evaluating the impact of inter-service

communication encryption, fault tolerance mechanisms, and zero-trust network

policies on performance.

3. Energy Efficiency Evaluation – Extending the model to include power consumption

metrics, in line with current sustainability-focused computing research.

4. Cross-Platform Validation – Reproducing experiments across different orchestration

tools (e.g., Docker Swarm, OpenShift) and cloud environments to ensure

generalizability.

5. Real-Time Monitoring Integration – Applying observability tools like Prometheus,

Grafana, and Jaeger to develop automated anomaly detection for distributed service

health monitoring.

By addressing these directions, future studies can further enhance the scalability,

sustainability, and security of container-based microservices architectures.

Ultimately, this research reaffirms that containerization is not merely an infrastructure

choice but a foundational paradigm shift in designing, deploying, and managing scalable

information systems.

5. REFERENCES

[1] L. De Lauretis, “From Monolithic Architecture to Microservices Architecture,” in 2019 IEEE

International Symposium on Software Reliability Engineering Workshops (ISSREW), IEEE, Oct. 2019,

pp. 93–96. doi: 10.1109/ISSREW.2019.00050.

[2] A. Razzaq and S. A. K. Ghayyur, “A systematic mapping study: The new age of software

architecture from monolithic to microservice architecture—awareness and challenges,” Comput.

Appl. Eng. Educ., vol. 31, no. 2, pp. 421–451, Mar. 2023, doi: 10.1002/cae.22586.

[3] A. Tiwana and H. Safadi, “Silence Inside Systems: Roots and Generativity Consequences,” Inf.

Syst. Res., Jun. 2025, doi: 10.1287/isre.2022.0586.

[4] G. Blinowski, A. Ojdowska, and A. Przybylek, “Monolithic vs. Microservice Architecture: A

Performance and Scalability Evaluation,” IEEE Access, vol. 10, pp. 20357–20374, 2022, doi:

10.1109/ACCESS.2022.3152803.

[5] I. Karabey Aksakalli, T. Çelik, A. B. Can, and B. Teki̇nerdoğan, “Deployment and

communication patterns in microservice architectures: A systematic literature review,” J. Syst.

Softw., vol. 180, p. 111014, Oct. 2021, doi: 10.1016/j.jss.2021.111014.

[6] S. Pinto-Agüero and R. Noel, “Microservices Evolution Factors: A Multivocal Literature

Review,” IEEE Access, vol. 13, pp. 88707–88730, 2025, doi: 10.1109/ACCESS.2025.3570658.

[7] K. Peng, L. Wang, J. He, C. Cai, and M. Hu, “Joint Optimization of Service Deployment and

Request Routing for Microservices in Mobile Edge Computing,” IEEE Trans. Serv. Comput., vol.

https://ejournal.ranedu.or.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and
Resource Efficiency in Modern Information Systems

164 | Vol. 1 No. 3 (2025) https://ejournal.ranedu.my.id/index.php/journix

17, no. 3, pp. 1016–1028, May 2024, doi: 10.1109/TSC.2024.3349408.

[8] Z. Wang, J. Zhu, J. Guo, and Y. Liu, “Microservice Deployment Based on Multiple Controllers

for User Response Time Reduction in Edge-Native Computing,” Sensors, vol. 25, no. 10, p. 3248,

May 2025, doi: 10.3390/s25103248.

[9] A. Nsouli, W. El-Hajj, and A. Mourad, “Reinforcement learning based scheme for on-demand

vehicular fog formation,” Veh. Commun., vol. 40, p. 100571, Apr. 2023, doi:

10.1016/j.vehcom.2023.100571.

[10] A. Marchese and O. Tomarchio, “Enhancing the Kubernetes Platform with a Load-Aware

Orchestration Strategy,” SN Comput. Sci., vol. 6, no. 3, p. 224, Feb. 2025, doi: 10.1007/s42979-025-

03712-z.

[11] L. M. Ruiz, P. P. Pueyo, J. Mateo-Fornes, J. V. Mayoral, and F. S. Tehas, “Autoscaling Pods on an

On-Premise Kubernetes Infrastructure QoS-Aware,” IEEE Access, vol. 10, pp. 33083–33094, 2022,

doi: 10.1109/ACCESS.2022.3158743.

[12] N. Shafi, M. Abdullah, W. Iqbal, A. Erradi, and F. Bukhari, “Cdascaler: a cost-effective dynamic

autoscaling approach for containerized microservices,” Cluster Comput., vol. 27, no. 4, pp. 5195–

5215, Jul. 2024, doi: 10.1007/s10586-023-04228-y.

[13] A. A. Khaleq and I. Ra, “Intelligent Autoscaling of Microservices in the Cloud for Real-Time

Applications,” IEEE Access, vol. 9, pp. 35464–35476, 2021, doi: 10.1109/ACCESS.2021.3061890.

[14] H. Bai, M. Xu, K. Ye, R. Buyya, and C. Xu, “DRPC: Distributed Reinforcement Learning

Approach for Scalable Resource Provisioning in Container-Based Clusters,” IEEE Trans. Serv.

Comput., vol. 17, no. 6, pp. 3473–3484, Nov. 2024, doi: 10.1109/TSC.2024.3433388.

[15] X. Chen and S. Xiao, “Multi-Objective and Parallel Particle Swarm Optimization Algorithm for

Container-Based Microservice Scheduling,” Sensors, vol. 21, no. 18, p. 6212, Sep. 2021, doi:

10.3390/s21186212.

[16] M. Lin, J. Xi, W. Bai, and J. Wu, “Ant Colony Algorithm for Multi-Objective Optimization of

Container-Based Microservice Scheduling in Cloud,” IEEE Access, vol. 7, pp. 83088–83100, 2019,

doi: 10.1109/ACCESS.2019.2924414.

[17] Z. Alamin, Dahlan, Khaeruddin, and Sahrul Ramadhan, “Evolving DevOps Practices in Modern

Software Engineering: Trends, Challenges, and Impacts on Quality and Delivery Performance,”

Journix J. Informatics Comput., vol. 1, no. 1, pp. 21–29, 2025, doi: 10.63866/journix.v1i1.4.

[18] J. Santos, C. Wang, T. Wauters, and F. De Turck, “Diktyo: Network-Aware Scheduling in

Container-Based Clouds,” IEEE Trans. Netw. Serv. Manag., vol. 20, no. 4, pp. 4461–4477, Dec. 2023,

doi: 10.1109/TNSM.2023.3271415.

[19] L. Bao, C. Wu, X. Bu, N. Ren, and M. Shen, “Performance Modeling and Workflow Scheduling

of Microservice-Based Applications in Clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 9,

pp. 2114–2129, Sep. 2019, doi: 10.1109/TPDS.2019.2901467.

[20] M. Camilli and B. Russo, “Modeling Performance of Microservices Systems with Growth

Theory,” Empir. Softw. Eng., vol. 27, no. 2, p. 39, Mar. 2022, doi: 10.1007/s10664-021-10088-0.

[21] S. Yu, H. Yang, R. Wang, Z. Luan, and D. Qian, “Evaluating architecture impact on system

energy efficiency,” PLoS One, vol. 12, no. 11, p. e0188428, Nov. 2017, doi:

10.1371/journal.pone.0188428.

[22] S. Maesaroh et al., Bahasa Pemrograman Python. Banten: Sada Kurnia Pustaka, 2024. [Online].

Available: https://repository.sadapenerbit.com/index.php/books/catalog/book/155

https://ejournal.ranedu.my.id/index.php/journix

