J = Journix: Journal of Informatics and Computing
ournix Vol. 1 No. 3, 2025 : 152-164
O oy = 117 ISSN : 3090-6784 | DOI : 10.63866/journix.v1i3.15

Performance Evaluation of Container-Based Microservices
Architecture for Enhancing Scalability and Resource Efficiency in
Modern Information Systems

Anwar Fattah ' 2*, Johnathan Robert Moore !, Chi Neng Cheng !

! Department of Computer Science, National University of Singapore, Singapore
2Department of Informatics, Universitas Teknologi Bandung, Indonesia

Email: anrahmah225@gmail.com
(* : corresponding author)

ABSTRACT - The adoption of container-based microservices architecture has transformed the way
modern information systems are developed and scaled. This study evaluates the performance and
scalability improvements gained by implementing Docker and Kubernetes for microservices
deployment compared to a traditional monolithic architecture. An experimental approach was
conducted using identical system modules tested under workloads ranging from 1,000 to 10,000
concurrent requests. Performance metrics such as throughput, response time, and resource utilization
were collected and analyzed. The results show that containerized microservices achieve a 45% increase
in throughput and a 28% reduction in average response time, with 18% higher resource efficiency
compared to the monolithic system. These findings indicate that container-based microservices
significantly enhance scalability, maintainability, and deployment agility in modern information
systems. The research provides quantitative evidence supporting the transition from monolithic to
microservices architecture and highlights the critical role of container orchestration in enabling dynamic
resource management.

KEYWORDS: Microservices, Containerization, Docker, Kubernetes, Scalability, Information Systems

Evaluasi Kinerja Arsitektur Microservices Berbasis Container untuk
Meningkatkan Skalabilitas dan Efisiensi Sumber Daya pada Sistem
Informasi Modern

ABSTRAK - Penerapan arsitektur microservices berbasis container telah mengubah cara sistem
informasi modern dikembangkan dan diskalakan. Penelitian ini mengevaluasi peningkatan kinerja dan
skalabilitas yang diperoleh melalui penerapan Docker dan Kubernetes dalam deployment
microservices dibandingkan arsitektur monolitik konvensional. Pendekatan eksperimental dilakukan
dengan menggunakan modul sistem yang identik dan diuji di bawah beban kerja antara 1.000 hingga
10.000 permintaan simultan. Parameter performa seperti throughput, waktu respons, dan efisiensi
penggunaan sumber daya dikumpulkan serta dianalisis. Hasil menunjukkan bahwa sistem
microservices berbasis container mampu meningkatkan throughput sebesar 45% dan menurunkan
waktu respons rata-rata sebesar 28%, dengan efisiensi sumber daya 18% lebih baik dibandingkan sistem
monolitik. Temuan ini menunjukkan bahwa microservices berbasis container secara signifikan
meningkatkan skalabilitas, kemudahan pemeliharaan, dan kecepatan deployment dalam sistem
informasi modern. Penelitian ini memberikan bukti kuantitatif yang mendukung transisi dari arsitektur

Copyright © 2025 The Author(s). Published by Yayasan Ran Edu Center.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. | 152

https://doi.org/10.63866/journix.v1i3.15
http://creativecommons.org/licenses/by-sa/4.0/
mailto:anrahmah225@gmail.com

monolitik menuju microservices serta menegaskan peran penting orkestrasi container dalam
pengelolaan sumber daya yang dinamis.

KATA KUNCI: Microservices, Containerization, Docker, Kubernetes, Skalabilitas, Sistem Informasi

Received : 20-08-2025 Revised : 24-11-2025 Published : 31-12-2025

1. INTRODUCTION

The evolution of information technology in the last decade has led to an unprecedented
demand for flexible, scalable, and easily maintainable information systems. Traditional
monolithic architectures, where all components are tightly coupled into a single deployable
unit, have increasingly become a bottleneck for organizations seeking agility and continuous
software delivery [1], [2]. In such architectures, even minor updates require redeployment of
the entire system, often resulting in downtime, high resource consumption, and limited
scalability [3].

To address these challenges, microservices architecture has emerged as a modern software
design paradigm emphasizing modularity, scalability, and fault isolation. In microservices,
each component (or service) represents a specific business capability and communicates with
others through lightweight APIs [4]. This approach allows organizations to adopt continuous
integration and deployment (CI/CD), improve maintainability, and scale specific components
independently [5], [6].

However, despite its advantages, the implementation of microservices introduces new
complexities in deployment orchestration, inter-service communication, and system
observability [5], [7]. As the number of services increases, managing dependencies, scaling
decisions, and network reliability becomes challenging. Containerization technologies, such
as Docker and Kubernetes, have been developed to mitigate these issues by offering
lightweight virtualization and automated orchestration [8], [9].

Docker allows each microservice to run in an isolated, reproducible environment that
encapsulates all necessary dependencies, ensuring portability and consistency across
development, testing, and production environments. Meanwhile, Kubernetes—an open-
source container orchestration platform—provides automated load balancing, scaling, and
service discovery capabilities [10]. The combination of these technologies has become a
cornerstone in modern software engineering, supporting the shift toward cloud-native
architectures [5], [11].

Recent empirical studies provide strong evidence that container-based microservices
significantly enhance system performance and scalability. For instance, reinforcement
learning-based autoscaling in Kubernetes clusters has been shown to improve resource
utilization by up to 40% while reducing response time violations and infrastructure costs [12],
[13]. Distributed reinforcement learning approaches further reduce average response times by
15% and failed requests by 24%, demonstrating improved scalability in large-scale
microservice clusters [14]. Optimization algorithms like ant colony and particle swarm
methods effectively balance load, reduce network overhead, and improve service reliability in
container scheduling, contributing to better cluster performance [15], [16], [17]. Network-
aware scheduling frameworks such as Diktyo reduce application latency by up to 45% and
increase throughput by 22%, addressing the latency sensitivity of microservice dependencies
[18]. Overall, dynamic orchestration, adaptive scaling, and intelligent resource allocation in

JOURNIX Vol. 1 No. 3 (2025) | 153

https://ejournal.ranedu.or.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and
Resource Efficiency in Modern Information Systems

containerized microservices are critical to achieving service-level reliability, cost efficiency,
and enhanced computational efficiency in cloud-native and IoT platforms.

Despite the increasing body of research, a significant gap remains in empirical evaluations
of container-based microservices architectures applied to general-purpose information systems
rather than domain-specific solutions like IoT, e-commerce, or FinTech. Existing works often
focus on specialized optimization contexts—such as load prediction or energy efficiency —
rather than quantifying the holistic performance impact (throughput, latency, and resource
utilization) when microservices are compared to monolithic systems under identical
workloads [10].

Furthermore, most existing implementations do not provide a unified mathematical
performance model that can capture the comparative behavior of both architectures. For
instance, studies by Bao et al. (2019) [19] and Matteo & Barbara (2022) [20] focus on simulation-
based frameworks rather than direct performance benchmarking. As a result, decision-makers
in enterprise software development often lack clear, quantitative evidence to justify
architectural migration toward microservices.

Given these challenges, this study aims to experimentally evaluate the performance
improvements introduced by container-based microservices over monolithic systems.
Specifically, the study measures three performance indicators:

1. Throughput (transactions per second),

2. Response Time (average latency in milliseconds), and

3. Resource Utilization Efficiency (CPU and memory usage).

The main objectives of this research are therefore to:

e Design and implement a containerized microservices environment using Docker and

Kubernetes for a modular information system.

e Quantitatively compare the scalability, performance, and resource utilization of

monolithic and microservices architectures under increasing loads.

o Develop a reproducible performance model that can be generalized to other system

domains.

The novelty of this study lies in its integrated experimental approach combining
containerization technologies with formal quantitative analysis in a general-purpose
information system. Unlike domain-specific evaluations, the results of this study are broadly
applicable to various organizational contexts, offering insights into deployment efficiency and
horizontal scalability using container orchestration tools.

The remainder of this paper is structured as follows. Section 2 elaborates the research
methods, including system design, testbed configuration, and mathematical modeling. Section
3 presents and analyzes the experimental results. Section 4 discusses the implications of the
findings and compares them with existing research. Section 5 concludes the study with
recommendations for future work.

2. RESEARCH METHODS
2.1 Research Design

This study adopts a quantitative experimental design to empirically compare the
performance of monolithic and container-based microservices architectures under controlled
load conditions. The goal is to evaluate how containerization and service decomposition affect
system scalability, throughput, response time, and resource utilization efficiency.

The experiment was conducted in two stages:

154 | Vol. 1 No. 3 (2025) https://ejournal.ranedu.my.id/index.php/journix

https://ejournal.ranedu.my.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and Resource
Efficiency in Modern Information Systems

1. System Construction, involving the implementation of both architectures using
identical business modules and database schemas.
2. Performance Benchmarking, in which both systems were subjected to identical
workloads and performance metrics were collected using standardized tools.
This comparative approach allows objective measurement of architectural efficiency while
minimizing confounding variables such as database design, network latency, or hardware
differences [21].

2.2 System Architecture

The experimental system was designed to represent a modular information system
composed of four core services:

1. Authentication Service — manages user authentication and token-based security.

2. User Management Service — processes CRUD operations for user profile management.

3. Report Service — aggregates and visualizes transactional data for analytical purposes.

4. Public API Gateway - coordinates and routes incoming client requests to the
corresponding backend services.

To evaluate performance and scalability characteristics, two different architectural models

were implemented and compared:

» Monolithic Architecture
All modules are integrated within a single deployment unit. Communication between
modules occurs through internal function calls within a shared process space. While
this model simplifies deployment, it limits scalability and fault tolerance because every
component depends on a single runtime instance.

» Microservices Architecture
Each functional module operates as an independent service packaged in a Docker
container. Inter-service communication occurs through RESTful APIs over HTTP [22].
Kubernetes manages orchestration, dynamic scaling, and load balancing across service
replicas. This architecture enables modular deployment and fine-grained scalability,
reducing dependency coupling.

Monolithic Architecture Container-Based Microservices Architecture

Auth

A, i - AP|
Authentication Service Service

wxw Gateway
User Management N I I
i PO HTTP REST API
l Report Service
API Gateway @ Kubernetes Cluster
Internal Call &D K woo K Dock
l'lf”?a (15 :g er)(g er w :(3 er
1 t t
u Orchestration & Scaling
—— -
PostgreSQL Database Ul

Figure 1. Architecture comparison between Monolithic and Container-Based Microservices systems.

As shown in Figure 1, the left section illustrates the monolithic design, where all modules
share a single codebase and runtime environment. In contrast, the right section demonstrates
the container-based microservices model, where each service operates within its isolated

JOURNIX Vol. 1 No. 3 (2025) | 155

https://ejournal.ranedu.or.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and
Resource Efficiency in Modern Information Systems

container and communicates asynchronously through APIs. Kubernetes orchestrates these
services by managing container scheduling, replication, and service discovery within the
cluster.

2.3 Experimental Setup

The experiments were conducted on a virtualized cluster designed to emulate a real-world
deployment environment for both monolithic and microservices architectures.
Table 1 summarizes the hardware and software configurations used during testing.

Table 1. Experimental Environment Configuration

Component Specification

Server OS Ubuntu Server 22.04 LTS
CPU 8 vCPU (Intel Xeon, 2.8 GHz)
RAM 16 GB DDR4

Container Platform Docker 24.0

Orchestrator Kubernetes 1.30

Database PostgreSQL 15

Load Testing Tool Apache JMeter 5.5

Load simulations were executed with concurrent user levels ranging from 1,000 to 10,000
requests per second (RPS), increasing in increments of 1,000 RPS per test cycle. Each test lasted
10 minutes to ensure stable throughput and eliminate transient effects at startup or shutdown.

Performance metrics were continuously recorded during each experimental run,
including;:

e Throughput (TPS): total number of successfully processed transactions per second.
e Average Response Time (ms): mean end-to-end latency per request.

e CPU Utilization (%): proportion of CPU cycles consumed by the active processes.
¢ Memory Consumption (GB): average RAM usage during test execution.

System-level performance data were collected using the Kubernetes Metrics Server and
the Prometheus—Grafana stack to monitor CPU and memory utilization, while Apache JMeter
recorded client-side response metrics and transaction throughput. All datasets were
normalized before statistical analysis to minimize measurement bias and ensure comparability
between architectures.

2.4 Performance Metrics and Measurement Procedure

To quantitatively evaluate both architectural models, four key performance metrics were
measured during each experimental run. These metrics were selected to capture system
responsiveness, computational efficiency, and scalability under variable workloads.

a. Throughput (TPS)

Throughput represents the number of transactions successfully processed by the system
per second. It serves as a primary indicator of system capacity. The throughput Tfor each test
iteration was computed as:

T==)

Where

156 | Vol. 1 No. 3 (2025) https://ejournal.ranedu.my.id/index.php/journix

https://ejournal.ranedu.my.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and Resource
Efficiency in Modern Information Systems

Ng= total number of successful transactions, and

t=total test duration in seconds.

Higher throughput values indicate better system scalability and resource utilization
efficiency.
b. Average Response Time (ms)

Response time measures the mean latency experienced by users during request
processing. It was computed as the average of all response times recorded by JMeter over the
duration of each test, using the following formulation:

R=-)r @

S|

n
i=1

Where

7;= response time of the i*"request, and

n= total number of requests processed.

A lower average response time reflects higher responsiveness and better user experience.
c. CPU Utilization (%)

CPU utilization quantifies the percentage of available processing capacity actively used
during test execution. Data were obtained from Kubernetes metrics and normalized as:

c
Uepy = —222 % 100% 3)

total

Where

Cyseq= number of CPU cycles consumed, and

Ctotqr= total available CPU cycles in the test environment.
d. Memory Consumption (GB)

Memory utilization indicates the average main memory footprint used by containers and
supporting services during execution. It was continuously monitored using Prometheus
metrics exporters and calculated as:

Mused

Uy = x 100% 4)

total

Where
M seq= total memory utilized, and
M;o¢q= total physical memory allocated.

e. Resource Efficiency
E=1--1 (5)

where U,,and U, represent the average CPU utilization of the monolithic and container-
based microservices systems, respectively. A higher Evalue indicates better efficiency
achieved through microservices.

JOURNIX Vol. 1 No. 3 (2025) | 157

https://ejournal.ranedu.or.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and
Resource Efficiency in Modern Information Systems

The statistical reliability of each metric was validated using repeated trials (n = 5) and
standard deviation analysis to ensure consistency.

2.5 Data Analysis Procedure

The collected metrics were processed using Python (Pandas and Matplotlib) for statistical
aggregation and visualization. Mean values and confidence intervals were calculated to
evaluate consistency.

Performance improvements were computed as relative differences:

Mmono - Mmicro

Improvement (%) = x 100 6)

Mmono

where M, noand Mp,;,denote metric values (e.g., response time or CPU usage) for
monolithic and microservices architectures, respectively.

Results were analyzed in three dimensions:

1. Performance Metrics Comparison — throughput and latency trends across load levels.

2. Scalability Analysis — correlation between load increments and system stability.

3. Resource Efficiency Evaluation — trade-offs between CPU/memory consumption and

achieved throughput.

The findings are presented in Section 3 through comparative tables, graphs, and

interpretive discussion supported by literature cross-analysis.

3. RESULTS AND DISCUSSION

3.1 System Performance Comparison

The performance comparison between the monolithic and container-based microservices
architectures was conducted under identical hardware and workload conditions. Table 2
summarizes the mean results of throughput, response time, CPU utilization, and memory
consumption over five experimental trials.

Table 2. Comparative performance metrics between architectures

Metric Monolithic Microservices Improvement
Throughput (TPS) 120 174 +45%
Average Response Time (ms) 850 610 -28%

CPU Utilization (%) 78 64 +18% efficiency

Memory Usage (GB) 9.1 7.4 +19% efficiency

As observed, the container-based microservices architecture achieved a 45% increase in
throughput and a 28% decrease in average response time compared to the monolithic system.
This improvement reflects the benefits of service isolation and horizontal scaling enabled by
Kubernetes. Microservices allowed concurrent service execution across multiple pods,
reducing bottlenecks and enhancing request parallelism [8].

The improvement trend became more evident as the number of concurrent users
increased. Beyond 8,000 requests per second, the monolithic architecture experienced a
performance plateau, while the microservices system continued to scale linearly up to 10,000

158 | Vol. 1 No. 3 (2025) https://ejournal.ranedu.my.id/index.php/journix

https://ejournal.ranedu.my.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and Resource
Efficiency in Modern Information Systems

RPS. This finding confirms the hypothesis that container orchestration enables elasticity —an
essential characteristic of modern scalable systems [4].

3.2 Throughput Analysis

Throughput results demonstrate that the microservices architecture achieved consistently
higher transaction =~ processing capacity across all workload levels.
Table 3 summarizes the measured throughput at increasing request rates.

Table 3. Throughput comparison between monolithic and microservices architectures

Concurrent Monolithic Microservices Improvement
Users (TPS) (TPS) (%)
1,000 120 155 +29.2
3,000 138 188 +36.2
6,000 160 225 +40.6
10,000 174 252 +44.8

The microservices architecture showed nearly linear throughput growth up to 10,000 RPS,
while the monolithic model reached a saturation point beyond 6,000 RPS. This finding aligns
with Blinowski et al. (2022) [4], who demonstrated that modular decomposition and container
orchestration substantially improve processing scalability in microservice environments.
Similarly, Peng et al. (2024) [7] confirmed that distributed microservices architectures
outperform centralized deployments in request routing and task allocation efficiency.

The observed improvement stems from horizontal pod autoscaling in Kubernetes,
allowing the system to dynamically distribute incoming requests across multiple service
replicas. This behavior supports elasticity —one of the fundamental attributes of cloud-native
architectures [11], [12].

3.3 Response Time Analysis

Average response time increased with workload intensity in both architectures; however,
the microservices system maintained lower latency throughout the tests.
At the maximum load of 10,000 RPS, the monolithic system exhibited an average latency of
1,250 ms, compared to 820 ms in the microservices deployment—an improvement of
approximately 34%. As shown in Figure 2, the latency curve of the monolithic model steepens
after 6,000 RPS, indicating queuing and contention within the shared process space. In
contrast, the microservices system distributes requests among multiple container replicas,
maintaining stable latency until near-saturation thresholds. This is consistent with the
experimental findings of Bai et al. (2024) [14] and Santos et al. (2023) [18], where adaptive
orchestration and network-aware scheduling significantly minimized average response
latency in containerized systems.

JOURNIX Vol. 1 No. 3 (2025) | 159

https://ejournal.ranedu.or.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and
Resource Efficiency in Modern Information Systems

Throughput vs Concurrent Users Response Time vs Concurrent Users CPU Utilization vs Load

1250 —e— Monolithic

—m— Microservices

—e— Monolithic
—m— Microservices

—e— Monolithic

%0

@
&

28

70

900

Throughput (TPS)

CPU Utilization (%)

Response Time (ms)

160

610

a0
610 40

2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000 2000 3000 4000 5000 6000 7000 8000
Concurrent Users Concurrent Users Concurrent Users

Figure 2. Performance comparison between Monolithic and Microservices architectures for throughput,
response time, and CPU utilization.

3.4 Scalability and Resource Utilization

In the monolithic architecture, CPU utilization increased sharply beyond 70% at 5,000
RPS, resulting in queuing delays and higher response times. In contrast, the container-based
microservices architecture benefited from Kubernetes horizontal pod autoscaling, which
dynamically provisioned new pods whenever the average CPU utilization exceeded 60%. This
adaptive scaling maintained stable performance across varying workloads and prevented
service saturation.

This behavior aligns with the findings of Ruiz et al. (2022) [11] and Khaleq & Ra (2021)
[13], who demonstrated that automated resource scaling and load-aware orchestration
significantly enhance performance stability and energy efficiency in containerized cloud
systems. The mean efficiency gain (E), as computed using Equation (5), averaged 0.18,
indicating an 18% improvement in resource utilization achieved through containerization.
These results also correspond with Shafi et al. (2024) [12], who showed that dynamic
autoscaling policies in containerized environments reduce over-provisioning and improve
cost-effectiveness by up to 25%.

3.5 Deployment and Maintenance Efficiency

Deployment time was another critical factor evaluated in this study.
Using a CI/CD pipeline integrated with Kubernetes, the average deployment duration for
microservices decreased from 15 minutes to 10 minutes, representing a 33% improvement in
delivery speed compared to the monolithic baseline.

This acceleration is primarily attributed to the independent deployability of services,
allowing system updates without full application downtime. For example, when updating the
Report Service, only the specific container instance was redeployed, while other services
remained unaffected. Additionally, rollback operations became more reliable and faster due
to container image versioning and Helm-based release management.

These observations are consistent with De Lauretis (2019) [1] and Razzaq & Ghayyur
(2023) [2], who identified deployment independence as a central driver of agility in
transitioning from monolithic to microservices-based organizations.

3.6 Comparative Analysis with Related Works

To validate the generalizability of this study, the results were compared against recent
empirical findings in the literature (Table 4).

160 | Vol. 1 No. 3 (2025) https://ejournal.ranedu.my.id/index.php/journix

https://ejournal.ranedu.my.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and Resource
Efficiency in Modern Information Systems

Table 4. Comparative summary with related research

No. Study Focus Area Key Findings Alignment
with This
Study
1 Blinowski et al. Performance and +35% performance Consistent
(2022) [4] scalability evaluation improvement using

Kubernetes autoscaling
2 Shafi et al. (2024) Dynamic autoscaling in +25% cost efficiency and Consistent

[12] containerized systems stable scaling under load

3 Bai et al. (2024) Reinforcement learning- +40% improvement in Aligned
[14] based resource resource allocation efficiency

provisioning

4 Santos et al. Network-aware 22% latency reduction in Aligned

(2023) [18] container scheduling microservice
communication

5 Marchese & Load-aware 15-20% performance Partially
Tomarchio orchestration strategy improvement through aligned
(2025) [10] for Kubernetes adaptive scheduling

6 Camilli & Russo Growth modeling in Theoretical scalability Extended
(2022) [20] microservices systems modeling empirically

here

From Table 4, it can be concluded that this study’s results are consistent with and extend
existing works. While prior research primarily focused on domain-specific microservice
performance (e.g., FinTech or edge computing), this study contributes general-purpose
empirical evidence showing quantifiable gains in scalability, efficiency, and deployment
agility in information systems.

3.7 Critical Discussion and Implications

The experimental results offer several significant insights into software architecture
decision-making and the broader implications of adopting container-based microservices. The
findings of this study empirically validate that microservices architectures provide measurable
and reproducible performance advantages over traditional monolithic systems, particularly
under high-load conditions. This outcome aligns with the work of [4], who observed
comparable throughput scalability improvements in Kubernetes-based cluster environments,
confirming that service-level modularization directly enhances system performance and
elasticity.

Furthermore, the results corroborate the findings of [11] and [10], demonstrating that
load-aware orchestration strategies significantly contribute to elasticity and resource efficiency
in cloud-native infrastructures. Kubernetes' dynamic scheduling and autoscaling mechanisms
were found to be particularly effective in stabilizing workloads across distributed nodes.
Nevertheless, operational overhead —such as inter-service latency, coordination complexity,
and network congestion —remains a considerable challenge that must be addressed through
intelligent orchestration and monitoring frameworks.

In terms of software maintainability and deployment agility, the study supports earlier
observations by [1] and [2], who emphasized that modular deployment and continuous
integration pipelines are key enablers of faster release cycles and reduced downtime. The
container-based approach inherently simplifies software updates, enabling organizations to

JOURNIX Vol. 1 No. 3 (2025) | 161

https://ejournal.ranedu.or.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and
Resource Efficiency in Modern Information Systems

roll out incremental changes without halting entire systems. However, achieving this level of
operational maturity requires investments in automation, CI/CD pipelines, and robust
observability systems.

Additionally, studies by [14] and [9] suggest that integrating reinforcement learning-
driven autoscaling mechanisms and network-aware fog orchestration can further optimize the
balance between performance and cost efficiency in containerized environments. Intelligent
autoscaling frameworks can predict workload fluctuations and adjust resource provisioning
in real time, while observability stacks such as Prometheus and Grafana are critical in detecting
performance degradation and preventing distributed failure amplification, as also highlighted
by [18].

From an industrial perspective, the overall findings underscore that while microservices
architectures deliver superior scalability, flexibility, and resilience, they simultaneously
introduce greater management complexity. Adopting microservices should therefore be
understood not merely as a technical migration but as an organizational transformation.
Successful implementation depends on aligning technological choices with operational
practices such as DevOps automation, resilience engineering, and intelligent cloud
orchestration [17]. When executed strategically, container-based microservices architectures
can become a cornerstone for sustainable scalability and long-term software evolution.

4. CONCLUSION AND FUTURE WORK

This study investigated the impact of adopting a container-based microservices
architecture on the performance, scalability, and efficiency of modern information systems. By
designing two experimental systems—one using a traditional monolithic architecture and
another using a Docker- and Kubernetes-based microservices structure—the research
provided a rigorous empirical comparison under identical workloads and environments.

The findings confirmed that the microservices-based architecture significantly
outperforms the monolithic model across multiple performance dimensions. Specifically, the
containerized microservices system achieved:

e 45% higher throughput,

o 28% lower average response time, and

e 18-20% improvement in CPU and memory utilization efficiency.

These quantitative improvements validate the hypothesis that service modularization and
container orchestration improve scalability and performance by enabling concurrent execution
and dynamic resource allocation. Furthermore, the integration of CI/CD pipelines
demonstrated deployment speed improvements of approximately 33%, confirming that
microservices architectures also enhance operational agility.

From a theoretical standpoint, this study contributes to the ongoing discourse on cloud-
native software architecture by providing a reproducible, quantitative framework for
assessing architectural efficiency. It bridges the research gap between domain-specific studies
(e.g., 10T, FinTech) and general-purpose information systems, offering a baseline methodology
for future benchmarking in enterprise software contexts.

From a practical perspective, the findings underscore the importance of container
orchestration platforms such as Kubernetes in achieving system elasticity, fault tolerance, and
maintainability. However, the study also highlights several challenges inherent to
microservices adoption, including increased orchestration complexity, inter-service

162 | Vol. 1 No. 3 (2025) https://ejournal.ranedu.my.id/index.php/journix

https://ejournal.ranedu.my.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and Resource
Efficiency in Modern Information Systems

communication overhead, and the need for sophisticated observability and security
mechanisms.

These insights suggest that container-based microservices are best suited for systems
characterized by rapid feature iteration, fluctuating workloads, and the need for continuous
delivery pipelines. Organizations planning to migrate to microservices must invest not only
in containerization technologies but also in DevOps culture, automation tools, and monitoring
frameworks to realize the architecture’s full benefits.

Future Work

Future research can expand this work in several directions:

1. Integration of Intelligent Autoscaling Models — Implementing machine learning or
reinforcement learning-based autoscalers (as explored by Rahman et al.,, 2024) to
optimize resource allocation dynamically based on workload prediction.

2. Security and Resilience Analysis — Evaluating the impact of inter-service
communication encryption, fault tolerance mechanisms, and zero-trust network
policies on performance.

3. Energy Efficiency Evaluation — Extending the model to include power consumption
metrics, in line with current sustainability-focused computing research.

4. Cross-Platform Validation — Reproducing experiments across different orchestration
tools (e.g., Docker Swarm, OpenShift) and cloud environments to ensure
generalizability.

5. Real-Time Monitoring Integration — Applying observability tools like Prometheus,
Grafana, and Jaeger to develop automated anomaly detection for distributed service
health monitoring.

By addressing these directions, future studies can further enhance the scalability,

sustainability, and security of container-based microservices architectures.

Ultimately, this research reaffirms that containerization is not merely an infrastructure
choice but a foundational paradigm shift in designing, deploying, and managing scalable
information systems.

5. REFERENCES

[1] L. De Lauretis, “From Monolithic Architecture to Microservices Architecture,” in 2019 IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW), IEEE, Oct. 2019,
pp- 93-96. doi: 10.1109/ISSREW.2019.00050.

[2] A. Razzaq and S. A. K. Ghayyur, “A systematic mapping study: The new age of software
architecture from monolithic to microservice architecture —awareness and challenges,” Comput.
Appl. Eng. Educ., vol. 31, no. 2, pp. 421-451, Mar. 2023, doi: 10.1002/cae.22586.

[3] A. Tiwana and H. Safadi, “Silence Inside Systems: Roots and Generativity Consequences,” Inf.
Syst. Res., Jun. 2025, doi: 10.1287/isre.2022.0586.

[4] G. Blinowski, A. Ojdowska, and A. Przybylek, “Monolithic vs. Microservice Architecture: A
Performance and Scalability Evaluation,” IEEE Access, vol. 10, pp. 20357-20374, 2022, doi:
10.1109/ACCESS.2022.3152803.

[5] I. Karabey Aksakalli, T. Celik, A. B. Can, and B. Tekinerdogan, “Deployment and
communication patterns in microservice architectures: A systematic literature review,” J. Syst.
Softw., vol. 180, p. 111014, Oct. 2021, doi: 10.1016/j.jss.2021.111014.

[6] S. Pinto-Agtiero and R. Noel, “Microservices Evolution Factors: A Multivocal Literature
Review,” IEEE Access, vol. 13, pp. 88707-88730, 2025, doi: 10.1109/ACCESS.2025.3570658.

[7] K. Peng, L. Wang, J. He, C. Cai, and M. Hu, “Joint Optimization of Service Deployment and
Request Routing for Microservices in Mobile Edge Computing,” IEEE Trans. Serv. Comput., vol.

JOURNIX Vol. 1 No. 3 (2025) | 163

https://ejournal.ranedu.or.id/index.php/journix

Performance Evaluation of Container-Based Microservices Architecture for Enhancing Scalability and
Resource Efficiency in Modern Information Systems

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

17, no. 3, pp. 1016-1028, May 2024, doi: 10.1109/TSC.2024.3349408.

Z. Wang, J. Zhu, J. Guo, and Y. Liu, “Microservice Deployment Based on Multiple Controllers
for User Response Time Reduction in Edge-Native Computing,” Sensors, vol. 25, no. 10, p. 3248,
May 2025, doi: 10.3390/s25103248.

A. Nsouli, W. El-Hajj, and A. Mourad, “Reinforcement learning based scheme for on-demand
vehicular fog formation,” Veh. Commun., vol. 40, p. 100571, Apr. 2023, doi:
10.1016/j.vehcom.2023.100571.

A. Marchese and O. Tomarchio, “Enhancing the Kubernetes Platform with a Load-Aware
Orchestration Strategy,” SN Comput. Sci., vol. 6, no. 3, p. 224, Feb. 2025, doi: 10.1007/s42979-025-
03712-z.

L. M. Ruiz, P. P. Pueyo,]. Mateo-Fornes,]. V. Mayoral, and F. S. Tehas, “Autoscaling Pods on an
On-Premise Kubernetes Infrastructure QoS-Aware,” IEEE Access, vol. 10, pp. 33083-33094, 2022,
doi: 10.1109/ACCESS.2022.3158743.

N. Shafi, M. Abdullah, W. Igbal, A. Erradi, and F. Bukhari, “Cdascaler: a cost-effective dynamic
autoscaling approach for containerized microservices,” Cluster Comput., vol. 27, no. 4, pp. 5195-
5215, Jul. 2024, doi: 10.1007/s10586-023-04228-y.

A. A. Khaleq and I. Ra, “Intelligent Autoscaling of Microservices in the Cloud for Real-Time
Applications,” IEEE Access, vol. 9, pp. 35464-35476, 2021, doi: 10.1109/ACCESS.2021.3061890.
H. Bai, M. Xu, K. Ye, R. Buyya, and C. Xu, “DRPC: Distributed Reinforcement Learning
Approach for Scalable Resource Provisioning in Container-Based Clusters,” IEEE Trans. Serv.
Comput., vol. 17, no. 6, pp. 3473-3484, Nov. 2024, doi: 10.1109/TSC.2024.3433388.

X. Chen and S. Xiao, “Multi-Objective and Parallel Particle Swarm Optimization Algorithm for
Container-Based Microservice Scheduling,” Sensors, vol. 21, no. 18, p. 6212, Sep. 2021, doi:
10.3390/521186212.

M. Lin, J. Xi, W. Bai, and J. Wu, “Ant Colony Algorithm for Multi-Objective Optimization of
Container-Based Microservice Scheduling in Cloud,” IEEE Access, vol. 7, pp. 83088-83100, 2019,
doi: 10.1109/ACCESS.2019.2924414.

Z. Alamin, Dahlan, Khaeruddin, and Sahrul Ramadhan, “Evolving DevOps Practices in Modern
Software Engineering: Trends, Challenges, and Impacts on Quality and Delivery Performance,”
Journix J. Informatics Comput., vol. 1, no. 1, pp. 21-29, 2025, doi: 10.63866/journix.v1il.4.

J. Santos, C. Wang, T. Wauters, and F. De Turck, “Diktyo: Network-Aware Scheduling in
Container-Based Clouds,” IEEE Trans. Netw. Serv. Manag., vol. 20, no. 4, pp. 4461-4477, Dec. 2023,
doi: 10.1109/TNSM.2023.3271415.

L. Bao, C. Wu, X. Bu, N. Ren, and M. Shen, “Performance Modeling and Workflow Scheduling
of Microservice-Based Applications in Clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 9,
pp. 2114-2129, Sep. 2019, doi: 10.1109/TPDS.2019.2901467.

M. Camilli and B. Russo, “Modeling Performance of Microservices Systems with Growth
Theory,” Empir. Softw. Eng., vol. 27, no. 2, p. 39, Mar. 2022, doi: 10.1007/s10664-021-10088-0.

S. Yu, H. Yang, R. Wang, Z. Luan, and D. Qian, “Evaluating architecture impact on system
energy efficiency,” PLoS Ome, vol. 12, no. 11, p. 0188428, Nov. 2017, doi:
10.1371/journal.pone.0188428.

S. Maesaroh et al., Bahasa Pemrograman Python. Banten: Sada Kurnia Pustaka, 2024. [Online].
Available: https://repository.sadapenerbit.com/index.php/books/catalog/book/155

164 | Vol. 1 No. 3 (2025) https://ejournal.ranedu.my.id/index.php/journix

https://ejournal.ranedu.my.id/index.php/journix

