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ABSTRACT − Early diagnosis of rice leaf diseases remains challenging due to subtle symptom 

manifestation, uncontrolled illumination, heterogeneous backgrounds, and the limited interpretability 

of purely data-driven models. This study proposes an explainable hybrid framework integrating a 

Mamdani Fuzzy Inference System (FIS) with an Artificial Neural Network (ANN) for early rice leaf 

disease diagnosis under real-field conditions. The framework combines engineered symptom 

descriptors extracted from segmented leaf regions (GLCM texture and HSV color features), acquisition-

time environmental measurements, and a fuzzy-derived disease severity cue to mitigate symptom 

ambiguity while preserving rule-based interpretability. Experiments were conducted on 8,000 field-

acquired rice leaf images collected from multiple locations, covering Healthy, bacterial leaf blight, 

brown spot, and leaf smut classes. Evaluation followed a leakage-controlled, location-disjoint protocol. 

Across five independent runs, the proposed FIS–ANN achieved an average accuracy of 91.3 ± 0.6% and 

a macro-F1 score of 90.8 ± 0.7%, significantly outperforming a feature-based ANN and a fine-tuned 

ResNet-18 baseline (paired McNemar test, p < 0.05). Per-class analysis shows consistent recall 

improvements for visually overlapping diseases, and additional evaluation on mild-severity samples 

confirms maintained sensitivity at early disease stages. Field deployment experiments using 

smartphone-acquired images from unseen locations further demonstrate robust generalization with low 

on-device inference latency. These results indicate that integrating fuzzy severity reasoning into a 

lightweight neural classifier provides a practical balance between performance, interpretability, and 

computational efficiency, supporting early disease screening and mobile decision-support applications 

in precision agriculture. 
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Integrasi Logika Fuzzy dan Jaringan Syaraf Tiruan untuk Diagnosis 

Dini Penyakit Tanaman Padi yang Dapat Dijelaskan 

ABSTRAK − Diagnosis dini penyakit daun padi masih menjadi tantangan akibat gejala awal yang 

samar, pencahayaan lapangan yang tidak terkendali, latar belakang yang heterogen, serta keterbatasan 

interpretabilitas pada model yang sepenuhnya berbasis data. Penelitian ini mengusulkan sebuah 

kerangka hibrida yang dapat dijelaskan dengan mengintegrasikan Mamdani Fuzzy Inference System 

(FIS) dan Artificial Neural Network (ANN) untuk diagnosis dini penyakit daun padi pada kondisi 

lapangan nyata. Kerangka ini mengombinasikan deskriptor gejala hasil rekayasa dari citra daun 

tersegmentasi (fitur tekstur GLCM dan warna HSV), pengukuran lingkungan saat akuisisi, serta isyarat 

tingkat keparahan penyakit berbasis fuzzy untuk mengurangi ambiguitas gejala sekaligus 
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mempertahankan interpretabilitas berbasis aturan. Eksperimen dilakukan pada 8.000 citra daun padi 

yang dikumpulkan dari berbagai lokasi lapangan dan mencakup kelas Sehat, hawar daun bakteri, 

bercak cokelat, dan gosong daun. Evaluasi dilakukan menggunakan protokol leakage-controlled 

dengan pemisahan data berbasis lokasi. Pada lima pengujian independen, model FIS–ANN yang 

diusulkan mencapai akurasi rata-rata sebesar 91,3 ± 0,6% dan nilai macro-F1 sebesar 90,8 ± 0,7%, serta 

secara signifikan mengungguli ANN berbasis fitur dan model ResNet-18 yang telah di-fine-tune (p < 

0,05). Analisis per kelas menunjukkan peningkatan sensitivitas yang konsisten pada penyakit dengan 

gejala visual yang saling tumpang tindih, dan evaluasi tambahan pada sampel tahap awal 

mengonfirmasi kemampuan diagnosis dini. Pengujian implementasi lapangan menggunakan citra dari 

smartphone di lokasi yang belum pernah dilihat sebelumnya juga menunjukkan kemampuan 

generalisasi yang baik dengan latensi inferensi yang rendah. 

KATA KUNCI: Penyakit Daun Padi, Sistem Inferensi Fuzzy, Jaringan Saraf Tiruan, Diagnosis Dini, XAI 

Received : 14-09-2025 Revised : 10-12-2025 Published : 31-12-2025 

1. INTRODUCTION 

Rice foliar diseases—particularly bacterial leaf blight (BLB), brown spot (BS), and leaf 

smut (LS)—remain major constraints on rice production in Indonesia and can lead to 

substantial yield losses if not detected at an early stage. In practice, disease identification still 

relies heavily on manual visual inspection, which is prone to subjectivity and inconsistent 

expertise, especially in rural areas; this limitation has motivated increasing adoption of AI-

based diagnostic methods. Prior studies show that hybrid soft-computing approaches can be 

effective: a Fuzzy Inference System (FIS) combined with a Complex-Valued Neural Network 

(CVNN) achieved 92% accuracy for rice leaf disease classification and severity assessment by 

integrating expert fuzzy rules with neural pattern recognition [1]. Similarly, a pure fuzzy 

approach using image feature extraction and fuzzy reasoning reported accuracy exceeding 

91%, offering interpretability through linguistic rules that are easier to communicate to 

practitioners [2]. On the other hand, fully data-driven models can reach very high predictive 

performance—for example, an optimized ANN achieved 97.94% accuracy for rice blast 

detection—highlighting the strength of neural learning for robust classification [3]. 

Collectively, these findings indicate that integrating fuzzy logic with neural networks offers a 

promising pathway to balance uncertainty handling and explainability with strong 

discriminative learning, which is particularly relevant for farmer-oriented decision support in 

diverse Indonesian field conditions [1], [2], [3]. 

Manual visual inspection remains the predominant approach for plant disease diagnosis 

in smallholder farming systems, yet its reliability is often compromised by limited expert 

availability, subjective interpretation, and uncontrolled field conditions (e.g., variable 

illumination, occlusions, and complex backgrounds). These constraints are especially 

problematic at the early stage of infection, where symptoms may manifest only as slight 

discoloration, small lesions, or subtle texture changes that are difficult to distinguish 

consistently without specialist training [4], [5]. Empirical evidence further shows that visual 

surveys can be time-consuming and error-prone, with performance strongly dependent on the 

observer and the symptom type; sensitivity and specificity may vary substantially across 

surveyors, undermining dependable detection and timely outbreak management [5], [6], [7]. 

To mitigate these limitations, automated image-based approaches leveraging machine 
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learning and deep learning—particularly CNN-based classifiers and advanced feature 

extraction pipelines—have been widely explored to provide more consistent and scalable 

diagnosis [6], [8], [9]. Nevertheless, deploying such methods in real-world settings remains 

challenging due to domain shift between laboratory and field imagery, as well as the need for 

interpretability, accessibility, and user trust for practical adoption among smallholder farmers 

[10]. 

Recent progress in explainable artificial intelligence (XAI) has sought to improve the 

transparency and practical trustworthiness of deep learning–based plant disease diagnosis, 

addressing the frequent criticism that CNN predictions are difficult to justify to end users. 

Common post-hoc explanation techniques—such as LIME, Grad-CAM, and Grad-CAM++—

provide visual rationales by highlighting image regions that most influence the predicted 

class, enabling agronomists to verify whether the model attends to biologically plausible lesion 

patterns rather than spurious background cues [11], [12], [13]. Beyond visualization, recent 

studies have explored hybrid explainable pipelines that integrate CNNs with ensemble 

strategies or additional generative/transformer-based components to improve diagnostic 

robustness while providing more explicit decision support, including narrative justifications 

and management recommendations [13], [14]. Several explainable deep models report high 

classification performance—often above 97% on curated benchmarks—suggesting that 

accuracy and interpretability can be jointly pursued when explanations are incorporated into 

the modeling workflow [11], [12], [15]. However, evidence also indicates that CNN 

explanations primarily reveal correlated visual cues (e.g., disease-specific color and texture 

patterns) and may still require careful validation for reliability and deployment readiness in 

real-field contexts [16], [17]. Consequently, there remains a need for diagnostic systems that 

combine strong predictive performance with explanations that are not only visual but also 

explicit and rule-consistent, facilitating actionable understanding in operational agricultural 

settings. 

Soft computing approaches—most notably fuzzy logic—provide an interpretable 

reasoning framework by representing ambiguous disease symptoms through linguistic 

variables and expert-derived rules, thereby accommodating uncertainty and imprecision 

commonly encountered in agricultural diagnosis. However, purely fuzzy systems typically 

depend strongly on the completeness and quality of the rule base and may not scale well to 

complex, heterogeneous datasets with diverse cultivars, backgrounds, and illumination 

conditions. In contrast, neural networks—particularly CNNs—are highly effective at learning 

discriminative visual patterns from large image corpora and have achieved very high accuracy 

in plant disease recognition tasks [18], [19], [20], [21]. At the same time, CNN-based systems 

often provide limited transparency in their decision-making, which constrains their use in 

operational settings where actionable justification is required by practitioners and farmers 

[20], [21]. To bridge this gap, hybrid methods that combine fuzzy reasoning with neural 

learning or optimization—such as bacterial foraging optimization with radial basis function 

neural networks—have been explored to improve classification reliability while retaining 

elements of interpretability [22]. More recent model designs also emphasize efficiency and 

deployment readiness through compact CNN architectures, improved feature extraction, and 

edge-oriented implementations, sometimes complemented by explainability tools to enhance 

user trust [23], [24], [25]. Overall, the literature suggests that integrating the interpretability of 

soft computing with the representational power of neural networks is a promising direction 

for scalable, accurate, and user-understandable plant disease diagnostic systems [21], [26]. 

https://ejournal.ranedu.or.id/index.php/journix


Integration of Fuzzy Logic and Neural Networks for Explainable Early Diagnosis of Rice Plant Diseases 

 

168 | Vol. 1 No. 3 (2025)   https://ejournal.ranedu.my.id/index.php/journix 

To address the above limitations, this study proposes an integrated Fuzzy–ANN 

framework that combines expert-driven fuzzy reasoning with data-driven neural learning for 

early rice leaf disease diagnosis. The proposed integration is designed to: (i) improve 

diagnostic performance under realistic field conditions (uncontrolled lighting, heterogeneous 

backgrounds, and symptom ambiguity), (ii) provide intrinsic interpretability through explicit 

fuzzy rules and their firing strengths (rather than relying solely on post-hoc visual 

explanations), and (iii) improve robustness across diverse Indonesian agro-ecological settings 

by incorporating both image-derived symptom descriptors and acquisition-time 

environmental parameters. The main contributions are: (1) a hybrid, modular Fuzzy–ANN 

architecture for early-stage rice leaf disease diagnosis using a multi-location Indonesian 

dataset; (2) a rigorous comparative evaluation against representative baselines (ANN, ANFIS, 

and CNN-based models) under a consistent experimental protocol, including class-wise 

analysis; (3) explainability through expert-validated fuzzy rules enabling case-level reasoning 

that can be inspected by agronomists and extension workers; and (4) a deployment-oriented 

validation demonstrating feasibility for mobile-assisted precision agriculture, including real-

field testing and inference-time reporting. By bridging knowledge-based reasoning and data-

driven learning within a single decision pipeline, this work aims to support an accurate yet 

transparent diagnostic tool that is more actionable for farmers and agricultural practitioners, 

and better aligned with the operational needs of smart and sustainable agriculture in 

Indonesia. 

2. RESEARCH METHODS 

This study develops an explainable hybrid framework that integrates a Mamdani Fuzzy 

Inference System (FIS) with an Artificial Neural Network (ANN) for early diagnosis of rice 

leaf diseases using field-acquired leaf images and acquisition-time environmental 

measurements. The proposed method is explicitly designed to (i) remain robust under real-

field variability, (ii) provide intrinsic interpretability through human-readable fuzzy rules, 

and (iii) support deployment on resource-constrained mobile devices. 

2.1 Study Design and Workflow 

The overall research workflow of the proposed hybrid Fuzzy–ANN framework is 

illustrated in Figure 1. The workflow is designed as a sequential and modular pipeline to 

ensure robustness under real-field conditions, interpretability of decision-making, and fair 

comparative evaluation. 

Specifically, the workflow consists of the following stages: 

• Data acquisition and expert annotation, involving the collection of rice leaf images and 

acquisition-time environmental measurements, followed by disease labeling and 

severity assessment by plant pathology experts; 

• Image preprocessing and leaf segmentation, including resolution normalization, 

illumination correction, and segmentation to isolate leaf regions from background 

artifacts; 

• Feature extraction from segmented images and environmental sensing, where 

engineered texture, color, and environmental features are computed and normalized; 

• Fuzzy inference system design for interpretable disease severity reasoning, in which 

expert-defined linguistic rules are used to infer a continuous disease severity score 

under uncertainty; 
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• ANN training for multi-class disease classification using fused features, where image-

derived features, environmental variables, and fuzzy severity outputs are integrated 

to perform disease classification; 

• Evaluation and validation, comprising comparison against baseline models under 

identical data splits and evaluation protocols, as well as real-field deployment testing 

using smartphone-acquired images. 

This structured and modular workflow, as depicted in Figure 1, ensures methodological 

transparency, reproducibility, and traceability between model design choices and 

experimental outcomes. 

 

 

Figure 1. Workflow of the proposed hybrid FIS–ANN framework for early rice leaf disease diagnosis. 
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2.2 Data Acquisition, Classes, and Annotation Protocol 

A dataset of 8,000 rice leaf images was collected between 2022 and 2024 from agricultural 

research centers under the Indonesian Agency for Agricultural Research and Development 

(IAARD), complemented by field surveys conducted across Java and Sumatra. Images were 

captured under natural field conditions using smartphones and consumer-grade digital 

cameras, deliberately preserving real-world variability in illumination, background clutter, 

and symptom appearance. 

The dataset comprises four classes: Healthy, Bacterial Leaf Blight (BLB), Brown Spot (BS), 

and Leaf Smut (LS). Each image was independently annotated by two certified plant 

pathology experts from IPB University. Inter-annotator agreement was assessed using 

Cohen’s κ, yielding κ = 0.87, indicating strong agreement. All disagreements were resolved 

through expert consensus. 

Environmental parameters recorded at image acquisition time include ambient 

temperature (°C), relative humidity (%), soil moisture (%), and light intensity (lux). Sensor 

readings were time-aligned with the corresponding image capture event and stored as 

structured metadata. 

2.3 Operational Definition of Early-Stage Disease Severity 

Disease severity was annotated following IRRI-aligned Disease Severity Index (DSI) 

guidelines and normalized to the range [0, 1]. Severity categories are defined as: 

• Mild (early-stage): DSI ∈ [0.00, 0.33] 

• Moderate: DSI ∈ [0.34, 0.66] 

• Severe: DSI ∈ [0.67, 1.00] 

In this study, early diagnosis explicitly refers to the identification of disease samples within 

the Mild severity range. This operationalization ensures consistency between fuzzy linguistic 

reasoning and quantitative severity modeling. 

2.4 Data Splitting Strategy 

To prevent optimistic bias due to shared field characteristics, the dataset was split using a 

group-disjoint, stratified protocol: 

• Grouping unit: field location (research center or farm site). 

• Split ratio: 70% training, 15% validation, 15% testing. 

• Constraint: no images from the same location appear in more than one split. 

This strategy prevents leakage arising from shared background, cultivar, camera device, 

and localized disease patterns. All reported results are obtained using this fixed split, ensuring 

consistent comparison across models. 

2.5 Image Preprocessing and Leaf Segmentation 

Each image undergoes the following preprocessing steps: 

• resizing to 256 × 256 pixels; 

• illumination normalization using Contrast Limited Adaptive Histogram Equalization 

(CLAHE) in the HSV color space; 

• leaf segmentation using Otsu’s global thresholding; 

• mask refinement via morphological opening and closing (3 × 3 kernel, two iterations). 

All subsequent feature extraction is performed exclusively on segmented leaf regions to 

suppress background-induced artifacts. 
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2.6 Feature Extraction and Normalization 

To preserve interpretability while maintaining discriminative power, a compact set of 

engineered features is employed. Four GLCM-based features are extracted: contrast, 

correlation, energy, and entropy.GLCM configuration: 

• distance 𝑑 = 1pixel 

• angles {0∘, 45∘, 90∘, 135∘} 

• features averaged across angles 

 

Mean values of Hue, Saturation, and Value are computed from segmented leaf pixels. 

Normalized values of temperature, relative humidity, soil moisture, and light intensity. All 

features are min–max scaled to [0, 1] using parameters derived from the training set only. The 

resulting feature vector is: 

 

 𝑋 ∈ ℝ11 = [𝑋𝐺𝐿𝐶𝑀
(4)

, 𝑋𝐻𝑆𝑉
(3)

, 𝑋𝐸𝑁𝑉
(4)

] (1) 

2.7 Fuzzy Inference System for Interpretable Severity Reasoning 

A Mamdani-type FIS is constructed using four input variables: 

• color variance index 𝑣𝑐, 

• texture roughness index 𝑟𝑡, 

• soil moisture 𝑚𝑠, 

• ambient temperature 𝑡𝑎. 

Each input is represented by Low, Medium, and High linguistic terms parameterized by 

Gaussian membership functions. The output variable is a continuous severity score 𝑠 ∈

[0,1]with linguistic labels Mild, Moderate, and Severe. 

The rule base consists of 45 expert-defined rules. Inference uses min–max Mamdani 

composition, and defuzzification employs the centroid method. For each prediction, the 

system records fired rules, firing strengths, and the resulting severity score, providing intrinsic 

explainability. 

2.8 ANN Classifier and Training Configuration 

The ANN performs four-class disease classification using fused features: 

 

 𝑍 = [𝑋, 𝑠] ∈ ℝ12 (2) 

 

Architecture: 

• Input layer: 12 units 

• Hidden layer 1: 64 units (ReLU) 

• Hidden layer 2: 32 units (ReLU) 

• Dropout: 0.3 

• Output layer: 4 units (Softmax) 

Training configuration: 

• optimizer: Adam (learning rate 0.001) 

• loss: categorical cross-entropy 

• batch size: 32 

• maximum epochs: 100 

• early stopping: patience = 10 (validation loss) 
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2.9 Hybrid Integration Strategy 

The hybrid model follows a modular cascade integration, where fuzzy severity reasoning 

augments ANN input features: 

 

 𝑦̂ = 𝑓𝜃([𝑋, 𝐹(𝑋)]) (3) 

 

This design preserves fuzzy interpretability while enabling data-driven classification. 

2.10  Baselines and Fair Comparison Protocol 

Baseline models include: 

• ANN without fuzzy features (11-dimensional input); 

• ANFIS using the same engineered and environmental features; 

• CNN baseline: ResNet-18 pretrained on ImageNet, fine-tuned on 256 × 256 images 

with random horizontal flip and ±10° rotation augmentation. 

All baselines use the same leakage-controlled split and evaluation protocol. 

2.11  Evaluation Metrics and Field Deployment Validation 

Evaluation metrics include accuracy, macro-precision, macro-recall, macro-F1, confusion 

matrices, training time, and inference latency. A field deployment evaluation is conducted 

using smartphone-acquired images from unseen locations. Average on-device inference time 

and classification performance are reported to assess real-world feasibility. 

3. RESULTS AND DISCUSSION 

This section reports experimental results and discusses the effectiveness of the proposed 

hybrid FIS–ANN framework relative to baseline models. The analysis follows the workflow 

depicted in Figure 1 and focuses on: (i) overall performance under a leakage-controlled 

protocol, (ii) per-class screening sensitivity, (iii) the contribution of fuzzy severity reasoning, 

and (iv) robustness in real-field mobile deployment. 

3.1 Protocol Compliance and Reproducibility 

All experiments strictly follow the leakage-controlled, group-disjoint split by field 

location described in Section 2.3, with a 70/15/15 train/validation/test partition. Image 

preprocessing, leaf segmentation, feature extraction (GLCM, HSV, and environmental 

variables), and normalization were executed exactly as specified in Sections 2.4–2.5. Min–max 

scaling parameters were fitted exclusively on the training set and applied unchanged to the 

validation and test sets. 

The Mamdani FIS configuration (Gaussian membership functions, 45 expert-defined 

rules, centroid defuzzification) was fixed across all experiments (Section 2.6). The ANN 

architecture and training schedule followed Section 2.7 without additional undocumented 

tuning. All baseline models were trained using the same data split, features (where applicable), 

and evaluation metrics. 

To assess stability, each model was trained over five random seeds using the fixed split. 

Reported results are presented as mean values, and statistical significance is assessed via 

paired McNemar tests (Section 3.7). 
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3.2 Overall Classification Performance 

The overall classification performance of the proposed hybrid FIS–ANN framework and 

baseline models is summarized in Table 1. In addition to overall accuracy, macro-averaged 

precision, recall, and F1-score are reported to account for potential class imbalance and to 

provide a more reliable assessment of screening performance. 

 
Table 1. Overall performance comparison on the leakage-controlled test set. 

Model 
Accuracy 

(%) 

Macro-Precision 

(%) 

Macro-Recall 

(%) 

Macro-F1 

(%) 

ANN (Image + Env features, 

X) 
86.4 85.9 84.7 85.2 

ANFIS 83.1 82.6 81.9 82.2 

ResNet-18 (fine-tuned) 88.7 88.1 87.4 87.7 

Proposed FIS–ANN (X + s) 91.3 91.0 90.6 90.8 

 

As shown in Table 1, the proposed FIS–ANN model achieves the highest accuracy (91.3%) 

and macro-F1 score (90.8%), outperforming both feature-based baselines and the deep learning 

model. The improvement over the ANN trained without fuzzy reasoning indicates that the 

fuzzy-derived severity cue 𝑠contributes complementary information beyond engineered 

image and environmental features. Compared with ResNet-18, the proposed approach 

benefits from explicit symptom descriptors and acquisition-time environmental context, 

which help mitigate sensitivity to illumination variation and background noise commonly 

encountered in field images. 

 

 
Figure 2. Overall comparison of Accuracy (%) and Macro-F1 (%) across models. 

 

The comparative performance trends are further illustrated in Figure 2, which presents 

accuracy and macro-F1 scores for all models, with error bars indicating variability across five 

random seeds. As observed in Figure 2, the proposed FIS–ANN consistently outperforms 

baseline models across both metrics, while also exhibiting lower performance variance, 

indicating more stable generalization under the leakage-controlled evaluation protocol. 
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3.3 Per-Class Screening Sensitivity and Confusion Analysis 

Because early disease management prioritizes minimizing missed detections, per-class 

recall is reported in Table 2. Recall is emphasized as the primary screening metric, since false 

negatives may delay intervention and lead to substantial yield loss. 

Table 2 shows that the proposed FIS–ANN model consistently improves recall across all 

disease classes compared with both the feature-based ANN and the ResNet-18 baseline. The 

largest gains are observed for Bacterial Leaf Blight (BLB) and Leaf Smut (LS), where recall 

increases by approximately 4–8 percentage points relative to ResNet-18. These improvements 

indicate that the integration of fuzzy severity reasoning enhances sensitivity to subtle 

symptom patterns that are difficult to distinguish using visual cues alone. 

 
Table 2. Per-class recall (%) on the leakage-controlled test set. 

Class ANN ResNet-18 Proposed FIS–ANN 

Healthy 92.1 94.0 95.2 

BLB 81.4 84.7 89.3 

BS 83.6 86.1 88.5 

LS 81.7 85.0 89.4 

 

To further examine misclassification patterns, the normalized confusion matrix of the 

proposed model is presented in Figure 3. As illustrated in Figure 3, the dominant confusion 

occurs between BLB and Brown Spot (BS), which exhibit visually similar lesion textures under 

mild severity conditions. Nevertheless, the strong diagonal dominance of the matrix confirms 

robust class separability, particularly for the Healthy class and LS, where severity-aware 

reasoning provides additional discrimination. 

 

Figure 3. Confusion matrix (Proposed FIS–ANN). 
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To directly support the claim of early diagnosis, model performance was further 

evaluated on samples labeled as Mild severity (DSI ∈ [0.00, 0.33]). The corresponding recall 

values are reported in Table 3. 

 
Table 3. Recall (%) on Mild-severity subset (DSI ∈ [0.00, 0.33]). 

Class Recall (Mild only) 

BLB 86.1 

BS 85.4 

LS 87.2 

Macro-Recall 86.2 

 

These results demonstrate that the proposed FIS–ANN model maintains high sensitivity 

even at early disease stages, where visual symptoms are subtle and uncertainty is highest. The 

relatively balanced recall across disease classes indicates that fuzzy severity reasoning 

contributes to stable screening performance under mild symptom conditions, strengthening 

the validity of the proposed framework for early diagnosis scenarios. 

3.4 Effect of Fuzzy Severity Reasoning (Ablation Study) 

To isolate the contribution of fuzzy severity reasoning, an ablation study was conducted 

by removing the FIS-derived severity output 𝑠from the ANN input and training the classifier 

using only the engineered image and environmental features 𝑋. 

The quantitative results of the ablation study are summarized in Table 4. When the fuzzy 

severity cue is excluded, classification performance drops substantially, with decreases of 4.9% 

in accuracy and 5.6% in macro-F1 score. This performance gap demonstrates that the fuzzy 

inference system provides informative and non-redundant cues rather than acting as a 

redundant preprocessing component. 

 
Table 4. Ablation study: impact of fuzzy severity reasoning. 

Configuration Accuracy (%) Macro-F1 (%) 

ANN without FIS (X only) 86.4 85.2 

ANN + FIS severity (X + s) 91.3 90.8 

 

To further analyze how the fuzzy inference system differentiates disease conditions, the 

distribution of fuzzy severity scores across classes is visualized in Figure 4. As shown in Figure 

4, severity scores exhibit partial overlap between classes, particularly under mild symptom 

conditions, reflecting inherent ambiguity in early-stage disease manifestation. Nevertheless, 

the class-wise shifts in severity distributions indicate that the FIS captures meaningful 

symptom progression patterns, which are subsequently exploited by the ANN to improve 

classification performance. 
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Figure 4. Distribution of fuzzy severity scores across disease classes 

 

Overall, the ablation results confirm the effectiveness of the proposed cascade integration 

strategy. By compressing expert knowledge on symptom ambiguity and environmental 

influence into a single continuous severity signal, the fuzzy inference system enhances 

generalization while preserving interpretability. 

3.5 Comparison with Deep Learning Baseline and Resource Footprint 

While the fine-tuned ResNet-18 baseline achieves competitive classification performance, 

convolutional neural network (CNN)–based predictions remain sensitive to background cues 

and illumination variability commonly present in field-acquired images. In contrast, the 

proposed hybrid FIS–ANN framework explicitly reduces background influence through leaf 

segmentation and incorporates acquisition-time environmental measurements and severity-

aware reasoning. 

Beyond predictive performance, computational efficiency is a critical factor for real-field 

and mobile deployment. The proposed ANN classifier contains approximately 3,044 trainable 

parameters (12–64–32–4), whereas ResNet-18 comprises approximately 11.7 million 

parameters. This large difference in model complexity directly impacts inference latency and 

resource consumption. 

The performance–efficiency trade-off between models is illustrated in Figure 5, which 

compares macro-F1 scores alongside efficiency indicators. As shown in Figure 5, the proposed 

FIS–ANN achieves a higher macro-F1 score than ResNet-18 while requiring several orders of 

magnitude fewer parameters. This result highlights that severity-aware feature fusion can 

provide accuracy gains comparable to deep CNNs without incurring their computational 

overhead. 
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Figure 5. Macro-F1 comparison with efficiency indicators, including parameter count and inference 

time. 

 

Overall, these findings demonstrate that the proposed hybrid approach offers a favorable 

balance between accuracy, interpretability, and computational efficiency, making it 

particularly suitable for deployment on resource-constrained devices in agricultural decision-

support scenarios. 

3.6 Field Deployment Evaluation 

To assess real-world applicability, the proposed hybrid FIS–ANN framework was 

evaluated using smartphone-acquired rice leaf images collected from field locations not seen 

during training or testing. This evaluation aims to examine model robustness under practical 

deployment conditions, including variations in illumination, background, and acquisition 

devices. 

The quantitative results of the field deployment evaluation are summarized in Table 5. 

Despite a moderate performance decrease compared with the controlled test set, the proposed 

model maintains high accuracy and macro-F1 score, indicating robust generalization to unseen 

environments. Importantly, the inference latency remains low, supporting real-time, on-

device decision support. 

 
Table 5. Field deployment performance on unseen locations. 

Metric Value 

Accuracy (%) 88.9 

Macro-F1 (%) 88.2 

Avg. inference time (ms/image) 42 

Device Android smartphone (mid-range) 

 

The observed performance gap between controlled and field evaluations can be attributed 

to uncontrolled imaging conditions and natural symptom variability. Nevertheless, the 
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proposed approach benefits from explicit segmentation and severity-aware reasoning, which 

mitigate some of these challenges compared with purely image-based models. 

Overall, the field deployment results demonstrate that the proposed hybrid framework 

achieves a favorable balance between predictive performance and computational efficiency, 

reinforcing its suitability for farmer-oriented decision-support systems under realistic 

agricultural conditions. 

3.7 Statistical Robustness and Significance 

To assess result stability and statistical reliability, all models were trained and evaluated 

across five independent runs using different random seeds while maintaining the same 

leakage-controlled, group-disjoint data split. Performance variability is reported using mean 

and standard deviation. 

Across these runs, the proposed FIS–ANN framework achieved an average accuracy of 

91.3 ± 0.6% and a macro-F1 score of 90.8 ± 0.7%, indicating low variance and stable convergence 

under the fixed evaluation protocol. In comparison, the ANN baseline without fuzzy 

reasoning exhibited larger performance fluctuations, reflecting higher sensitivity to 

initialization and training dynamics. 

To verify that the observed performance gains are statistically significant and not 

attributable to random variation, paired McNemar tests were conducted on the test set 

predictions. The proposed FIS–ANN was compared against (i) the feature-based ANN 

baseline and (ii) the fine-tuned ResNet-18 model. In both cases, the improvements in accuracy 

were found to be statistically significant at the 0.05 level (p < 0.05). 

These statistical results confirm that the performance improvements introduced by fuzzy 

severity reasoning are robust and reproducible under a leakage-controlled evaluation setting. 

Moreover, the combination of low variance across runs and statistically significant gains 

supports the generalizability of the proposed hybrid framework and strengthens the validity 

of the conclusions drawn from the experimental analysis. 

Overall, the results demonstrate that integrating fuzzy severity reasoning into a feature-

based ANN significantly improves accuracy, macro-F1, and per-class recall under a leakage-

controlled, location-disjoint evaluation protocol. The hybrid design provides intrinsic 

interpretability, robustness under real-field variability, and a low computational footprint, 

making it well suited for early rice leaf disease diagnosis and mobile decision-support 

applications. 

4. CONCLUSION 

This study presented a hybrid framework that integrates a Mamdani Fuzzy Inference 

System (FIS) with an Artificial Neural Network (ANN) for early diagnosis of rice leaf diseases 

under real-field conditions. The proposed approach combines engineered image features, 

acquisition-time environmental measurements, and an interpretable fuzzy severity cue to 

address symptom ambiguity and environmental variability commonly encountered in 

practical agricultural settings. 

Experimental results obtained under a leakage-controlled, group-disjoint evaluation 

protocol demonstrate that the proposed FIS–ANN framework consistently outperforms both 

feature-based and deep learning baselines. Across five independent runs, the model achieved 

an average accuracy of 91.3 ± 0.6% and a macro-F1 score of 90.8 ± 0.7%, with statistically 

significant improvements over the ANN baseline and the fine-tuned ResNet-18 model (𝑝 <
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0.05). These results confirm that the inclusion of fuzzy severity reasoning provides 

complementary, non-redundant information that enhances classification performance and 

stability. 

Further analysis showed that the proposed method improves per-class recall, particularly 

for disease categories with visually overlapping symptoms, and maintains high sensitivity on 

mild-severity samples, supporting its suitability for early-stage disease screening. Field 

deployment experiments on smartphone-acquired images from unseen locations 

demonstrated robust generalization, achieving high accuracy with low inference latency on 

resource-constrained devices. 

Overall, the results indicate that integrating fuzzy severity reasoning into a lightweight 

neural classifier offers a favorable balance between predictive performance, interpretability, 

and computational efficiency. While the study focused on four common rice leaf diseases, the 

proposed framework is modular and can be extended to additional crops or disease categories 

by incorporating new expert rules and feature descriptors. Future work will explore larger 

multi-region datasets and longitudinal field studies to further assess generalization across 

seasons and cultivation practices. 
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