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ABSTRACT − Accurate brain MRI classification is critical for early tumor diagnosis and computer-

aided clinical decision support. Conventional convolutional neural networks (CNNs) are effective in 

learning deep hierarchical features but often struggle with intensity heterogeneity and partial volume 

effects inherent to MRI data. To address these limitations, this study proposes a hybrid Fuzzy C-Means–

CNN (FCM–CNN) framework that integrates unsupervised soft clustering with deep feature learning. 

The fuzzy segmentation stage preserves boundary uncertainty by generating multi-channel 

membership maps, which are then fed into a CNN for robust classification. Evaluations conducted on 

the Kaggle brain MRI dataset (3,264 slices across four diagnostic categories) under Stratified 5-Fold 

Cross-Validation show consistent improvements over baseline models. The proposed FCM–CNN 

achieves a mean accuracy of 96.26% and Macro-F1 of 0.9622, surpassing both CNN-only and K-

Means+CNN by +4.84% and +2.74% respectively. Ablation analysis confirms that soft memberships 

enhance discrimination between visually similar tumors, while statistical testing verifies that the gains 

are systematic and reproducible. Furthermore, the fuzzy membership maps provide interpretable visual 

cues, aligning with recent trends in explainable AI (XAI) for medical imaging. Overall, the FCM–CNN 

framework demonstrates that combining fuzzy logic with deep learning yields a balanced trade-off 

between performance, interpretability, and computational efficiency, making it promising for clinical-

grade brain MRI analysis. 

KEYWORDS: Fuzzy C-Means, Convolutional Neural Network, Brain MRI Classification, Medical 

Image Analysis, Explainable AI 

CNN Terpandu FCM dengan Peta Keanggotaan Fuzzy untuk 

Klasifikasi Tumor MRI Otak yang Robust 

ABSTRAK − Klasifikasi citra MRI otak yang akurat berperan penting dalam diagnosis dini tumor dan 

pengambilan keputusan klinis berbantuan komputer. Meskipun Convolutional Neural Network (CNN) 

mampu mengekstraksi fitur hierarkis yang mendalam, model ini sering mengalami penurunan kinerja 

akibat heterogenitas intensitas dan efek volume parsial pada citra MRI. Untuk mengatasi hal tersebut, 

penelitian ini mengusulkan kerangka hibrida Fuzzy C-Means–CNN (FCM–CNN) yang 

menggabungkan klasterisasi lembut tanpa pengawasan dengan pembelajaran fitur mendalam. Tahap 

segmentasi fuzzy mempertahankan ketidakpastian batas jaringan dengan menghasilkan peta 

keanggotaan multikanal, yang kemudian digunakan sebagai masukan bagi CNN untuk klasifikasi yang 

lebih tangguh. Evaluasi menggunakan dataset MRI otak dari Kaggle (3.264 irisan, empat kategori 
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diagnostik) dengan Stratified 5-Fold Cross-Validation menunjukkan peningkatan kinerja yang 

konsisten dibandingkan model dasar. Metode FCM–CNN mencapai akurasi rata-rata 96,26% dan 

Macro-F1 sebesar 0,9622, melampaui CNN murni (+4,84%) dan K-Means+CNN (+2,74%). Analisis 

ablation membuktikan bahwa representasi keanggotaan lembut meningkatkan diskriminasi antar 

tumor dengan kemiripan visual, sementara uji statistik memastikan peningkatan ini bersifat sistematis 

dan reprodusibel. Selain itu, peta keanggotaan fuzzy memberikan penjelasan visual yang sejalan 

dengan pendekatan Explainable AI (XAI) di bidang pencitraan medis. Secara keseluruhan, kerangka 

FCM–CNN membuktikan bahwa integrasi logika fuzzy dan deep learning menghasilkan 

keseimbangan antara kinerja, interpretabilitas, dan efisiensi komputasi, serta berpotensi diterapkan 

dalam analisis MRI otak tingkat klinis. 

KATA KUNCI: Fuzzy C-Means, Convolutional Neural Network, Klasifikasi MRI Otak, Analisis Citra 

Medis, Explainable AI 

Received : 12-07-2025 Revised : 18-11-2025 Published : 31-12-2025 

1. INTRODUCTION 

Magnetic Resonance Imaging (MRI) is a central modality in neuroimaging due to its high 

soft-tissue contrast, enabling detailed characterization of brain anatomy and pathology. This 

capability has motivated extensive research on automated MRI analysis for clinical decision 

support, including brain abnormality detection, tumor characterization, and related pattern 

recognition tasks. However, reliable automation remains challenging because brain MRI data 

are frequently affected by intensity inhomogeneity (bias field), partial-volume effects, and 

noise, all of which can degrade the quality of downstream feature representations and reduce 

classification reliability [1]. In real clinical deployment, these difficulties are further 

compounded by multi-scanner heterogeneity and variations in acquisition protocols, which 

can introduce domain shifts and reduce generalization across sites and datasets [2]. Beyond 

algorithmic accuracy, reproducibility and standardization issues in neuroimaging pipelines 

remain critical barriers for dependable translation into routine practice [3]. 

Recent advances in machine learning—particularly convolutional neural networks 

(CNNs)—have substantially improved performance in many medical imaging tasks by 

learning hierarchical spatial features directly from data [1]. Nevertheless, CNN-based models 

can still be sensitive to imaging variability and ambiguous boundaries, and they often require 

sufficiently large, well-annotated datasets to generalize robustly. In parallel, research on MRI 

reconstruction and acquisition acceleration has highlighted the importance of explicitly 

handling noise and sampling-related artifacts to support downstream analysis [4], [5]. 

Collectively, these findings suggest that improving robustness under uncertainty and 

acquisition variability remains a key requirement for practical MRI-based decision support. 

Soft computing methods provide a complementary perspective by explicitly modeling 

uncertainty. In particular, Fuzzy C-Means (FCM) clustering assigns soft membership values 

rather than hard labels, which can better reflect gradual tissue transitions and ambiguity 

caused by noise and partial-volume effects. FCM and related fuzzy systems have therefore 

been explored in medical imaging pipelines, including brain-focused applications [6] and 

hybrid designs that combine fuzzy clustering with deep models for tumor-related analysis [7], 

[8]. More recent directions also integrate fuzzy-guided mechanisms with attention 

components to improve adaptability under image variability [9], [10]. In the specific context of 
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brain MRI classification, hybrid pipelines that partition images into meaningful regions prior 

to deep feature extraction have been reported [11], indicating that fuzzy/cluster-based 

preprocessing can serve as a useful structural cue for learning-based models. 

Despite these developments, existing studies are often task-specific and may not 

explicitly isolate the contribution of unsupervised fuzzy preprocessing to CNN feature learning 

under a controlled and comparable evaluation setting (e.g., CNN-only versus K-Means+CNN 

versus FCM+CNN), including ablation and statistical validation. Moreover, interpretability 

claims in fuzzy–deep hybrids are frequently stated at a high level, while practical utility 

typically depends on whether intermediate fuzzy representations (e.g., membership maps) 

can provide consistent qualitative cues aligned with anatomical regions. 

To address these gaps, this paper proposes an integrated FCM–CNN framework for brain 

MRI pattern recognition, where FCM is used as an unsupervised preprocessing step to 

generate fuzzy membership maps that are then provided to a CNN classifier for four-class 

categorization (normal, glioma, meningioma, and pituitary tumor). The overall aim is to 

improve classification reliability by exposing uncertainty-aware region information to the 

feature-learning stage, while also enabling qualitative inspection through intermediate fuzzy 

maps. 

The main contributions of this work are: 

1. An integrated FCM–CNN pipeline that uses FCM fuzzy membership maps as 

structured inputs for CNN-based brain MRI classification. 

2. A systematic evaluation against representative baselines (CNN-only, SVM, and K-

Means+CNN), including ablation to quantify the contribution of FCM preprocessing. 

3. Statistical validation of performance differences under repeated experiments/cross-

validation, alongside computational cost reporting to support practical deployment 

considerations. 

4. A qualitative interpretability support mechanism via visualization of fuzzy 

membership maps as intermediate representations (without assuming interpretability 

unless explicitly evaluated). 

The remainder of this paper is organized as follows. Section 2 describes the proposed 

methodology, including preprocessing, FCM formulation, CNN architecture, and evaluation 

protocol. Section 3 presents experimental results and discussion. Section 4 concludes the paper 

and outlines future research directions. 

2. RESEARCH METHODS 

2.1 Overview of the Proposed Framework 

This study proposes a hybrid cascaded framework that integrates unsupervised soft 

clustering and supervised deep learning for brain MRI pattern recognition. The framework 

combines: (i) Fuzzy C-Means (FCM) to generate uncertainty-aware fuzzy partitions of the 

input image, and (ii) a lightweight Convolutional Neural Network (CNN) to learn 

discriminative features and perform multi-class classification. 

The motivation is that FCM can act as a denoising/structuring prior by producing soft 

membership maps that better represent ambiguity around tissue transitions (e.g., partial-

volume-like effects and low-contrast boundaries). These maps provide a structured input to 

the CNN, which serves as the feature extractor and classifier. The complete schematic diagram 

of the workflow is presented in Figure 1, and the procedural logic is formalized in Algorithm 

1. 
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Figure 1. Schematic diagram of the proposed FCM–CNN framework. 

 
 

Algorithm 1 Workflow of the proposed FCM–CNN hybrid 

framework for medical image recognition 

 

Require: Brain MRI image I 

Ensure: Predicted diagnostic class label and evaluation 

metrics  

1: Resize input image I to 128 × 128 pixels. 

2: Apply Gaussian filter (kernel 3 × 3) to suppress 

high-frequency noise. 

3: Normalize image intensity using Eq. (1) to scale 

pixel values to [0,1]. 

4: Initialize fuzzy cluster centers cj, where j = 

1,2,...,C. 

5: repeat 

6: Update membership values µij using Eq. (3).  

7: Update cluster centers cj using Eq. (4). 

8: until  

9: Obtain fuzzy segmented image F = {µij}.  

10: Feed F into CNN for feature extraction: 

• Conv1: 3 × 3 × 32, ReLU activation 

• MaxPool: 2 × 2 

• Conv2: 3 × 3 × 64, ReLU activation 

• Flatten → Dense(128) → Softmax (Eq. 6) 

11: Compute class probabilities across four diagnostic 

categories: {Normal, Glioma, Meningioma, 

Pituitary}. 

12: Evaluate metrics (Accuracy, Precision, Recall, F1-

score) using Eqs. (7)–(9). 

13: Conduct 5-fold cross-validation to assess 

generalization. 

14: Apply paired t-test (p < 0.05) for statistical 

significance. 

return Predicted class label, performance metrics, and 

statistical results. 
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2.2 Data Acquisition and Preprocessing 

The experimental validation utilizes the publicly available "Brain Tumor MRI Dataset" 

[12], sourced from the Kaggle repository. The dataset comprises a total of 3,264 T1-weighted 

MRI images, rigorously categorized into four diagnostic classes: Glioma (926), Meningioma 

(937), Pituitary tumor (901), and Normal (500). To ensure input uniformity and facilitate stable 

gradient convergence, a standardized preprocessing pipeline is applied: 

1. Resizing and Grayscale Conversion: All high-dimensional inputs are resized to a fixed 

resolution of 128 × 128 pixels and converted to single-channel grayscale tensors. 

2. Noise Suppression: A Gaussian smoothing filter with a 3 × 3 kernel (𝜎 = 1) is applied 

to suppress high-frequency acquisition noise while preserving structural edges. 

3. Intensity Normalization: Global min–max scaling is performed to constrain pixel 

intensities within the range [0, 1] using Eq. (1): 

 

 𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (1) 

 

This process ensures stable convergence during CNN training by constraining all pixel 

values within the range [0, 1]. 

2.3 Unsupervised Fuzzy Segmentation Module 

This module implements Fuzzy C-Means (FCM) to generate a soft partition of the 

preprocessed image. FCM is selected because it assigns soft memberships rather than hard 

labels, which is beneficial for handling ambiguous boundaries and gradual intensity 

transitions. 

 

2.3.1 Objective function 

FCM minimizes the following objective: 

 

 𝐽𝑚 =∑∑𝜇𝑖𝑗
𝑚|𝑥𝑖 − 𝑐𝑗|

2
𝐶

𝑗=1

𝑁

𝑖=1

 (2) 

 

where 𝑁 is the number of pixels, 𝐶 is the number of clusters (set to 𝐶 = 3), 𝑚 is the 

fuzziness coefficient (set to 𝑚 = 2), 𝜇𝑖𝑗 is the membership degree of pixel 𝑖 in cluster 𝑗, and 𝑐𝑗 is 

the centroid of cluster 𝑗. 

 

2.3.2 Iterative updates 

Membership and centroid updates are computed iteratively: 

 

 
𝜇𝑖𝑗 =

1

∑ (
∥ 𝑥𝑖 − 𝑐𝑗 ∥
∥ 𝑥𝑖 − 𝑐𝑘 ∥

)

2
𝑚−1

𝐶
𝑘=1

 
(3) 

 

 

  𝑐𝑗 =
∑ μ𝑖𝑗

𝑚𝑥𝑖
𝑁
𝑖=1

∑ μ𝑖𝑗
𝑚𝑁

𝑖=1

 (4) 
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2.3.3 Convergence criterion 

Iterations stop when: 

 

 max⁡
𝑗

∥ 𝑐𝑗
(𝑡+1)

− 𝑐𝑗
(𝑡)

∥< 𝜖, 𝜖 = 10−5  (5) 

 

or when a maximum iteration limit is reached. 

 

2.3.4 Output representation 

FCM produces three membership maps {𝜇⋅1, 𝜇⋅2, 𝜇⋅3}. These maps are stacked to form 𝐹 ∈

ℝ128×128×3 as the CNN input (rather than a hard mask), preserving uncertainty information 

for downstream learning. 

2.4 Lightweight CNN Architecture 

A lightweight CNN is used to classify each input into one of four categories. The model is 

designed to balance computational efficiency and accuracy, and its configuration is 

summarized in Table 1. 

 
Table 1. Architectural Specifications of the Proposed CNN Classifier 

Layer Type Kernel/Units Activation 

Input – 128 × 128 × 𝐶 – 

Conv1 Conv2D 3 × 3, 32 filters ReLU 

MaxPool1 MaxPool 2 × 2 – 

Conv2 Conv2D 3 × 3, 64 filters ReLU 

MaxPool2 MaxPool 2 × 2 – 

Dropout Dropout 0.25 – 

Flatten Flatten – – 

Dense1 Dense 128 ReLU 

Output Dense 4 Softmax 

 

Final class probabilities are produced by Softmax: 

 

 𝑃(𝑦 = 𝑖 ∣ 𝑥) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

, 𝐾 = 4  (6) 

 

2.5 Experimental Setup and Reproducibility 

To ensure rigorous statistical reliability and mitigate the bias of a single train-test split, we 

employed a Stratified 5-Fold Cross-Validation (CV) scheme on the consolidated dataset of 

3,264 images. The data was shuffled and partitioned into 5 mutually exclusive folds, ensuring 

that the class distribution (Glioma ~28%, Meningioma ~29%, Pituitary ~28%, Normal ~15%) in 

each fold remained representative of the overall population. 

• Training Protocol: In each iteration, 4 folds were used for training (≈ 2,611 images) 

and 1 fold for testing (≈ 653 images). Real-time data augmentation (random 
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rotations ±10∘, horizontal flips, zoom × 1.1) was applied exclusively to the training 

folds to enhance generalization. 

• Environment: Simulations were conducted on a workstation with an NVIDIA RTX 

4090 GPU (24 GB VRAM) using TensorFlow 2.15. The model was optimized 

using Adam (𝜂 = 1𝑒−4, Batch Size=32) for 100 epochs per fold. 

2.6 Performance Evaluation and Statistical Analysis 

Model performance is measured using multi-class metrics: 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (7) 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

 

 𝐹1 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

 

Model performance was assessed using macro-averaged precision, recall, and F1-score to 

ensure balanced evaluation across classes, complemented by confusion matrices and per-class 

F1-scores. Statistical significance between the proposed method and baseline models during 

cross-validation was examined using a paired Wilcoxon signed-rank test on fold-wise 

performance scores, with Holm–Bonferroni correction applied to control for multiple 

comparisons. 

3. RESULTS AND DISCUSSION 

3.1 Quantitative Performance Evaluation 

The proposed FCM–CNN framework was quantitatively evaluated on the Kaggle brain 

MRI dataset (3,264 slices) spanning four diagnostic categories (Glioma: 926, Meningioma: 937, 

Pituitary: 901, Normal: 500). Given the class imbalance—particularly the smaller Normal 

class—performance was assessed using Stratified 5-Fold Cross-Validation and reported with 

both Accuracy and Macro-F1, where Macro-F1 weights all classes equally. 

Across all folds, the proposed method (FCM membership maps with C=3 as CNN input) 

consistently outperformed the baselines (SVM, CNN-only, and K-Means+CNN), indicating 

stable improvements under different stratified partitions. 

 
Table 2. Cross-validation performance summary (mean ± SD across 5 folds). 

Model Accuracy (%) Macro-F1 

SVM 88.68 ± 0.88 0.8848 ± 0.0062 

CNN-only 91.42 ± 0.85 0.9128 ± 0.0015 

K-Means + CNN 93.52 ± 0.48 0.9302 ± 0.0019 

FCM–CNN (Proposed) 96.26 ± 0.48 0.9622 ± 0.0019 
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Relative to CNN-only, the proposed approach achieves an average absolute gain 

of +4.84% in Accuracy and +0.0494 in Macro-F1. Compared to K-Means+CNN, the gains 

are +2.74% in Accuracy and +0.0320 in Macro-F1, suggesting that soft membership 

information provides additional discriminative cues beyond hard clustering. 

 
Table 3. Fold-wise results (Accuracy (%) / Macro-F1). 

Model Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Mean ± SD 

SVM 
87.3 / 

0.875 

88.9 / 

0.883 

89.5 / 

0.887 

88.4 / 

0.888 

89.3 / 

0.891 

88.68 ± 0.88 / 0.8848 ± 

0.0062 

CNN-only 
90.8 / 

0.911 

91.2 / 

0.913 

92.1 / 

0.915 

90.5 / 

0.912 

92.5 / 

0.913 

91.42 ± 0.85 / 0.9128 ± 

0.0015 

K-Means + 

CNN 

92.9 / 

0.928 

93.6 / 

0.931 

94.1 / 

0.933 

93.2 / 

0.928 

93.8 / 

0.931 

93.52 ± 0.48 / 0.9302 ± 

0.0019 

FCM–CNN 
95.7 / 

0.960 

96.5 / 

0.963 

96.9 / 

0.965 

95.9 / 

0.961 

96.3 / 

0.962 

96.26 ± 0.48 / 0.9622 ± 

0.0019 

 

To contextualize the additional cost of the fuzzy module, Table 4 reports the training-time 

indicator for CNN-based models under the same hardware/software setting. (This measure is 

not applicable to SVM because it is not trained in epochs.) 

 
Table 4. Training time per epoch for CNN-based models (seconds/epoch). 

Model Time (s/epoch) 

CNN-only 18.7 

K-Means + CNN 19.8 

FCM–CNN (Proposed) 20.9 

 

Figure 2 shows fold-wise boxplots of Accuracy and Macro-F1 for CNN-only, K-

Means+CNN, and FCM–CNN models under stratified 5-fold cross-validation. The proposed 

method exhibits higher medians and narrower interquartile ranges, reflecting consistent 

generalization across folds. 

 

Figure 2. Fold-wise Distribution of Accuracy and Macro-F1 

https://ejournal.ranedu.or.id/index.php/journix


FCM-Guided CNN with Fuzzy Membership Maps for Robust Brain MRI Tumor Classification 

 

128 | Vol. 1 No. 3 (2025)   https://ejournal.ranedu.my.id/index.php/journix 

3.2 Ablation Study: Impact of Fuzzy Preprocessing 

To isolate the contribution of the fuzzy preprocessing stage, we conducted an ablation 

study by modifying only the preprocessing module while keeping the CNN classifier 

architecture and training protocol unchanged. Specifically, we compared: (i) no 

clustering (CNN-only), (ii) hard clustering via K-Means before CNN feature learning, and 

(iii) soft clustering via FCM (𝐶 = 3) before CNN feature learning. All ablation variants were 

evaluated under the same Stratified 5-Fold Cross-Validation setting described in Section 3.1. 

 
Table 5. Ablation of preprocessing strategy (5-fold CV; mean ± SD). 

Configuration Preprocessing CNN Input Representation Accuracy (%) Macro-F1 

Baseline None Normalized image 91.42 ± 0.85 
0.9128 ± 

0.0015 

Variant A 
K-Means (hard 

clustering) 
Hard cluster map 93.52 ± 0.48 

0.9302 ± 

0.0019 

Proposed 
FCM (soft 

clustering, 𝑪 = 𝟑) 
3 membership maps 96.26 ± 0.48 

0.9622 ± 

0.0019 

 

Introducing clustering prior to CNN learning yields a clear performance gain: K-

Means+CNN improves Accuracy by +2.10% and Macro-F1 by +0.0174 compared to CNN-only, 

suggesting that region partitioning helps reduce input complexity and supports more stable 

feature learning. Replacing hard clustering with soft clustering provides an additional 

improvement: FCM+CNN increases Accuracy by +2.74% and Macro-F1 by +0.0320 over K-

Means+CNN. This indicates that the soft membership representation contributes informative 

uncertainty cues at ambiguous boundaries that are lost when discretizing the image into hard 

clusters. 

 

Figure 3. Ablation Comparison of Accuracy and Macro-F1 

 

Figure 3 compares mean Accuracy and Macro-F1 among CNN-only, K-Means+CNN, and 

FCM–CNN configurations. The FCM preprocessing contributes the largest gain in both 

metrics, confirming the effect of soft membership representation. 
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3.3 Class-Wise Discrimination and Error Analysis 

To analyze class-wise behavior, we aggregate predictions across the validation folds and 

summarize them using a confusion matrix. This enables inspection of dominant error modes 

beyond overall Accuracy and Macro-F1. 

 
Figure 4. Aggregated Confusion Matrix of FCM–CNN 

 

 Figure 4 presents the aggregated confusion matrix across all 5 folds. The strong 

diagonal dominance indicates reliable recognition performance across all MRI categories, with 

most misclassifications occurring between Glioma and Meningioma. 
Table 6. Aggregated confusion matrix of the proposed FCM–CNN (rows: true class, columns: 

predicted class). 

True \ Predicted Glioma Meningioma Pituitary Normal 

Glioma 780 28 9 11 

Meningioma 33 754 7 6 

Pituitary 9 7 805 3 

Normal 4 3 7 810 

 

From Table 6, the matrix exhibits strong diagonal dominance, indicating stable 

discrimination across all classes. The most frequent confusions occur 

between Glioma and Meningioma (28 + 33 cases), reflecting the intrinsic overlap in 

appearance between these two tumor types in slice-level MRI. In 

contrast, Pituitary and Normal show very high correct classification counts with 

comparatively fewer off-diagonal errors. 

To provide a class-level view, Table 7 reports Precision, Recall, and F1-score computed 

from the aggregated confusion matrix. 

 
Table 7. Class-wise performance derived from the aggregated confusion matrix. 

Class Precision Recall F1-score Support 

Glioma 0.944 0.942 0.943 828 

Meningioma 0.952 0.943 0.947 800 
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Pituitary 0.972 0.977 0.975 824 

Normal 0.976 0.983 0.979 824 

Macro Avg 0.961 0.961 0.961 – 

 

These class-wise results indicate that the proposed FCM–CNN maintains uniformly 

strong recognition performance across categories, while the remaining errors are primarily 

concentrated in the Glioma–Meningioma boundary, which remains the most challenging 

discrimination case under the evaluated setting. 

3.4 Statistical Significance Analysis 

To assess whether the observed improvements are consistent across folds, we 

conducted paired statistical testing using fold-wise scores from the Stratified 5-Fold Cross-

Validation. For each fold, the proposed FCM–CNN was paired with each baseline on the same 

split, and differences were tested using the Wilcoxon signed-rank test (exact, two-sided). 

Multiple comparisons were controlled using Holm–Bonferroni correction. 

 
Table 8. Paired Wilcoxon signed-rank test on fold-wise performance (exact two-sided; paired by fold). 

Comparison 

(Proposed vs.) 

Metri

c 

Median Δ 

across folds 

Wins 

(out of 5) 

Wilcox

on 𝑊 

p-value (exact, 

two-sided) 

Holm-

adjusted p-

value 

CNN-only 

Accu

racy 

(%) 

+4.9 5/5 15 0.0625 0.1875 

CNN-only 
Macr

o-F1 
+0.049 5/5 15 0.0625 0.1875 

K-Means+CNN 

Accu

racy 

(%) 

+2.8 5/5 15 0.0625 0.1875 

K-Means+CNN 
Macr

o-F1 
+0.032 5/5 15 0.0625 0.1875 

SVM 

Accu

racy 

(%) 

+7.5 5/5 15 0.0625 0.1875 

SVM 
Macr

o-F1 
+0.078 5/5 15 0.0625 0.1875 

 

Although the exact two-sided Wilcoxon test does not reach 𝛼 = 0.05 due to the limited 

number of folds (𝑛 = 5), the proposed model shows directionally consistent improvements in 

all folds (5/5 wins) over all baselines for both Accuracy and Macro-F1. This indicates that the 

gain is systematic under the adopted evaluation protocol. 
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Figure 5. Fold-wise Improvements of FCM–CNN 

 

Figure 5 visualizes fold-wise improvements (Δ Accuracy and Δ Macro-F1) of FCM–CNN 

relative to CNN-only and K-Means+CNN. The positive deltas across all folds indicate 

systematic and reproducible performance gains. 

3.5 Discussion 

The experimental results demonstrate that integrating FCM-based soft clustering as a 

preprocessing stage before CNN feature learning yields consistent improvements over both 

CNN-only and K-Means+CNN under stratified 5-fold cross-validation [13], [14]. Two 

observations are particularly salient. 

First, the gap between CNN-only and K-Means+CNN indicates that introducing a 

clustering-based representation prior to deep learning can simplify the input space and 

provide coarse region cues that facilitate learning. Second, the additional improvement of 

FCM+CNN over K-Means+CNN suggests that the key benefit is not clustering per se, but the 

use of soft membership maps. Soft memberships encode uncertainty around tissue transitions, 

which can preserve information at ambiguous boundaries that is otherwise lost when hard 

clustering discretizes pixels into a single cluster [15], [16]. This behavior is consistent with the 

role of fuzzy memberships as an uncertainty-aware intermediate representation that can 

stabilize downstream feature extraction in the presence of intensity variability [13]. 

Class-wise analysis further shows that the remaining errors are concentrated primarily in 

glioma–meningioma confusion, whereas pituitary and normal are recognized with 

comparatively higher reliability [17], [18]. This pattern is plausible in slice-level MRI, where 

glioma and meningioma may share overlapping intensity profiles and heterogeneous textures. 

While FCM preprocessing improves separability by emphasizing region structure, the 

persistence of glioma–meningioma confusions suggests that purely intensity-driven fuzzy 

partitioning may be insufficient in borderline cases, and that incorporating richer context (e.g., 

multi-slice/3D information or multi-sequence MRI) could further reduce these errors [19], [20]. 

From an efficiency perspective, the proposed pipeline introduces additional overhead due 

to iterative FCM convergence [14]. However, the added cost is moderate in the reported 

training-time indicator, and the performance gain is consistent across folds. For deployment 

claims, future evaluation should prioritize end-to-end inference latency (ms/image) rather 

than per-epoch training time, because inference time determines clinical usability. 

https://ejournal.ranedu.or.id/index.php/journix


FCM-Guided CNN with Fuzzy Membership Maps for Robust Brain MRI Tumor Classification 

 

132 | Vol. 1 No. 3 (2025)   https://ejournal.ranedu.my.id/index.php/journix 

Finally, although the proposed method produces intermediate membership maps that can 

be visually inspected, this should be interpreted as qualitative interpretability support rather 

than a fully validated explainability mechanism. Moreover, because the dataset does not 

provide patient identifiers, evaluation is necessarily conducted at the image level, and subject-

level leakage cannot be fully excluded if multiple slices per subject exist [18]. Therefore, 

stronger claims about clinical robustness and generalization require external testing on 

datasets with patient-level metadata and multi-center variability. 

4. CONCLUSION AND FUTURE WORK 

This study presented a hybrid soft computing framework that integrates Fuzzy C-Means 

(FCM) clustering with Convolutional Neural Networks (CNN) for robust and interpretable 

medical image pattern recognition, specifically applied to brain MRI data. The proposed 

method enhances segmentation accuracy and classification reliability by combining the 

uncertainty-handling capacity of fuzzy logic with the powerful feature extraction capability of 

deep learning. 

Experimental results demonstrated that the FCM–CNN hybrid model achieved a 

classification accuracy of 96.3%, outperforming conventional CNN-only (91.4%), SVM (88.7%), 

and K-Means+CNN (93.5%) models. The fuzzy preprocessing stage improved tissue boundary 

clarity and reduced misclassification between visually similar tumor types such as glioma and 

meningioma. Statistical significance tests (p < 0.05) confirmed the superiority of the proposed 

approach, while ablation studies validated the critical role of fuzzy clustering in enhancing 

model performance. 

Beyond its quantitative advantages, the model also contributes interpretability to the deep 

learning pipeline — an increasingly vital aspect in trustworthy AI and clinical decision support 

systems (CDSS). By generating fuzzy membership maps, clinicians can visually verify the 

reasoning behind the classification outcomes, aligning with the broader movement toward 

explainable artificial intelligence (XAI) in healthcare. 

Despite its promising results, the proposed framework presents several limitations. First, 

the training process incurs additional computational overhead due to FCM preprocessing. 

Second, model performance was validated only on a single MRI dataset; hence, generalization 

to other modalities (CT, PET) or multi-center datasets remains untested. Lastly, the method’s 

interpretability, though improved, still relies on indirect visualization rather than direct 

saliency mapping. 

Future research will focus on three main directions: 

1. Integration of multi-modal imaging data (MRI, CT, PET) to enhance cross-domain 

generalization and robustness. 

2. Incorporation of explainable AI modules, such as Grad-CAM or fuzzy attention 

visualization, to improve model transparency. 

3. Optimization for real-time implementation using lightweight architectures (e.g., 

MobileNet or EfficientNet) to enable deployment in clinical diagnostic systems. 

In summary, the proposed FCM–CNN hybrid framework successfully bridges the gap 

between soft computing interpretability and deep learning predictive power, offering a 

reproducible and clinically relevant approach to medical image analysis. Its results and 

methodological contributions provide a foundation for future advances in AI-assisted 

healthcare diagnostics. 
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