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ABSTRACT - Accurate brain MRI classification is critical for early tumor diagnosis and computer-
aided clinical decision support. Conventional convolutional neural networks (CNNs) are effective in
learning deep hierarchical features but often struggle with intensity heterogeneity and partial volume
effects inherent to MRI data. To address these limitations, this study proposes a hybrid Fuzzy C-Means—
CNN (FCM-CNN) framework that integrates unsupervised soft clustering with deep feature learning.
The fuzzy segmentation stage preserves boundary uncertainty by generating multi-channel
membership maps, which are then fed into a CNN for robust classification. Evaluations conducted on
the Kaggle brain MRI dataset (3,264 slices across four diagnostic categories) under Stratified 5-Fold
Cross-Validation show consistent improvements over baseline models. The proposed FCM-CNN
achieves a mean accuracy of 96.26% and Macro-F1 of 0.9622, surpassing both CNN-only and K-
Means+CNN by +4.84% and +2.74% respectively. Ablation analysis confirms that soft memberships
enhance discrimination between visually similar tumors, while statistical testing verifies that the gains
are systematic and reproducible. Furthermore, the fuzzy membership maps provide interpretable visual
cues, aligning with recent trends in explainable AI (XAI) for medical imaging. Overall, the FCM-CNN
framework demonstrates that combining fuzzy logic with deep learning yields a balanced trade-off
between performance, interpretability, and computational efficiency, making it promising for clinical-
grade brain MRI analysis.

KEYWORDS: Fuzzy C-Means, Convolutional Neural Network, Brain MRI Classification, Medical
Image Analysis, Explainable Al

CNN Terpandu FCM dengan Peta Keanggotaan Fuzzy untuk
Klasifikasi Tumor MRI Otak yang Robust

ABSTRAK - Klasifikasi citra MRI otak yang akurat berperan penting dalam diagnosis dini tumor dan
pengambilan keputusan klinis berbantuan komputer. Meskipun Convolutional Neural Network (CNN)
mampu mengekstraksi fitur hierarkis yang mendalam, model ini sering mengalami penurunan kinerja
akibat heterogenitas intensitas dan efek volume parsial pada citra MRI. Untuk mengatasi hal tersebut,
penelitian ini mengusulkan kerangka hibrida Fuzzy C-Means-CNN (FCM-CNN) vyang
menggabungkan klasterisasi lembut tanpa pengawasan dengan pembelajaran fitur mendalam. Tahap
segmentasi fuzzy mempertahankan ketidakpastian batas jaringan dengan menghasilkan peta
keanggotaan multikanal, yang kemudian digunakan sebagai masukan bagi CNN untuk klasifikasi yang
lebih tangguh. Evaluasi menggunakan dataset MRI otak dari Kaggle (3.264 irisan, empat kategori
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diagnostik) dengan Stratified 5-Fold Cross-Validation menunjukkan peningkatan kinerja yang
konsisten dibandingkan model dasar. Metode FCM—-CNN mencapai akurasi rata-rata 96,26% dan
Macro-F1 sebesar 0,9622, melampaui CNN murni (+4,84%) dan K-Means+CNN (+2,74%). Analisis
ablation membuktikan bahwa representasi keanggotaan lembut meningkatkan diskriminasi antar
tumor dengan kemiripan visual, sementara uji statistik memastikan peningkatan ini bersifat sistematis
dan reprodusibel. Selain itu, peta keanggotaan fuzzy memberikan penjelasan visual yang sejalan
dengan pendekatan Explainable AI (XAI) di bidang pencitraan medis. Secara keseluruhan, kerangka
FCM-CNN membuktikan bahwa integrasi logika fuzzy dan deep learning menghasilkan
keseimbangan antara kinerja, interpretabilitas, dan efisiensi komputasi, serta berpotensi diterapkan
dalam analisis MRI otak tingkat klinis.

KATA KUNCI: Fuzzy C-Means, Convolutional Neural Network, Klasifikasi MRI Otak, Analisis Citra
Medis, Explainable Al
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1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a central modality in neuroimaging due to its high
soft-tissue contrast, enabling detailed characterization of brain anatomy and pathology. This
capability has motivated extensive research on automated MRI analysis for clinical decision
support, including brain abnormality detection, tumor characterization, and related pattern
recognition tasks. However, reliable automation remains challenging because brain MRI data
are frequently affected by intensity inhomogeneity (bias field), partial-volume effects, and
noise, all of which can degrade the quality of downstream feature representations and reduce
classification reliability [1]. In real clinical deployment, these difficulties are further
compounded by multi-scanner heterogeneity and variations in acquisition protocols, which
can introduce domain shifts and reduce generalization across sites and datasets [2]. Beyond
algorithmic accuracy, reproducibility and standardization issues in neuroimaging pipelines
remain critical barriers for dependable translation into routine practice [3].

Recent advances in machine learning—particularly convolutional neural networks
(CNNs)—have substantially improved performance in many medical imaging tasks by
learning hierarchical spatial features directly from data [1]. Nevertheless, CNN-based models
can still be sensitive to imaging variability and ambiguous boundaries, and they often require
sufficiently large, well-annotated datasets to generalize robustly. In parallel, research on MRI
reconstruction and acquisition acceleration has highlighted the importance of explicitly
handling noise and sampling-related artifacts to support downstream analysis [4], [5].
Collectively, these findings suggest that improving robustness under uncertainty and
acquisition variability remains a key requirement for practical MRI-based decision support.

Soft computing methods provide a complementary perspective by explicitly modeling
uncertainty. In particular, Fuzzy C-Means (FCM) clustering assigns soft membership values
rather than hard labels, which can better reflect gradual tissue transitions and ambiguity
caused by noise and partial-volume effects. FCM and related fuzzy systems have therefore
been explored in medical imaging pipelines, including brain-focused applications [6] and
hybrid designs that combine fuzzy clustering with deep models for tumor-related analysis [7],
[8]. More recent directions also integrate fuzzy-guided mechanisms with attention
components to improve adaptability under image variability [9], [10]. In the specific context of
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brain MRI classification, hybrid pipelines that partition images into meaningful regions prior
to deep feature extraction have been reported [11], indicating that fuzzy/cluster-based
preprocessing can serve as a useful structural cue for learning-based models.

Despite these developments, existing studies are often task-specific and may not
explicitly isolate the contribution of unsupervised fuzzy preprocessing to CNN feature learning
under a controlled and comparable evaluation setting (e.g., CNN-only versus K-Means+CNN
versus FCM+CNN), including ablation and statistical validation. Moreover, interpretability
claims in fuzzy-deep hybrids are frequently stated at a high level, while practical utility
typically depends on whether intermediate fuzzy representations (e.g., membership maps)
can provide consistent qualitative cues aligned with anatomical regions.

To address these gaps, this paper proposes an integrated FCM-CNN framework for brain
MRI pattern recognition, where FCM is used as an unsupervised preprocessing step to
generate fuzzy membership maps that are then provided to a CNN classifier for four-class
categorization (normal, glioma, meningioma, and pituitary tumor). The overall aim is to
improve classification reliability by exposing uncertainty-aware region information to the
feature-learning stage, while also enabling qualitative inspection through intermediate fuzzy
maps.

The main contributions of this work are:

1. An integrated FCM-CNN pipeline that uses FCM fuzzy membership maps as

structured inputs for CNN-based brain MRI classification.

2. A systematic evaluation against representative baselines (CNN-only, SVM, and K-
Means+CNN), including ablation to quantify the contribution of FCM preprocessing.

3. Statistical validation of performance differences under repeated experiments/cross-
validation, alongside computational cost reporting to support practical deployment
considerations.

4. A qualitative interpretability support mechanism via visualization of fuzzy
membership maps as intermediate representations (without assuming interpretability
unless explicitly evaluated).

The remainder of this paper is organized as follows. Section 2 describes the proposed
methodology, including preprocessing, FCM formulation, CNN architecture, and evaluation
protocol. Section 3 presents experimental results and discussion. Section 4 concludes the paper
and outlines future research directions.

2. RESEARCH METHODS
2.1 Overview of the Proposed Framework

This study proposes ahybrid cascaded framework that integrates unsupervised soft
clustering and supervised deep learning for brain MRI pattern recognition. The framework
combines: (i) Fuzzy C-Means (FCM) to generate uncertainty-aware fuzzy partitions of the
input image, and (i) alightweight Convolutional Neural Network (CNN)to learn
discriminative features and perform multi-class classification.

The motivation is that FCM can act as a denoising/structuring prior by producing soft
membership maps that better represent ambiguity around tissue transitions (e.g., partial-
volume-like effects and low-contrast boundaries). These maps provide a structured input to
the CNN, which serves as the feature extractor and classifier. The complete schematic diagram
of the workflow is presented in Figure 1, and the procedural logic is formalized in Algorithm
1.
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(a) Workflow of the proposed FCM-CNN hybrid framework
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Figure 1. Schematic diagram of the proposed FCM—CNN framework.
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Algorithm 1 Workflow of the proposed FCM-CNN hybrid
framework for medical image recognition

Require: Brain MRI image I

Ensure: Predicted diagnostic class label and evaluation

metrics
1: Resize input image I to 128 x 128 pixels.

2: Apply Gaussian filter (kernel 3 x 3) to suppress
high-frequency noise.
3: Normalize image intensity using Eq. (1) to scale
pixel values to [0,1].
4: Initialize fuzzy cluster centers c¢j;, where j =
1,2,...,C.
repeat
: Update membership values wpij using Eqg. (3).
: Update cluster centers cj using Eg. (4).
mmﬂJ@HU7#w<€
Obtain fuzzy segmented image F = {uij}.
0: Feed F into CNN for feature extraction:
e Convl: 3 x 3 x 32, ReLU activation
e MaxPool: 2 x 2
e Conv2: 3 x 3 x 64, RelLU activation
e Flatten — Dense(128) — Softmax (Eg. 6)

11: Compute class probabilities across four diagnostic
categories: {Normal, Glioma, Meningioma,
Pituitary}.

12: Evaluate metrics (Accuracy, Precision, Recall, Fl-
score) using Egs. (7)-(9).

13: Conduct 5-fold cross-validation to assess
generalization.

14: Apply paired t-test (p < 0.05) for statistical
significance.

return Predicted class label, performance metrics, and
statistical results.

= o © ~J o U1
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2.2 Data Acquisition and Preprocessing

The experimental validation utilizes the publicly available "Brain Tumor MRI Dataset"
[12], sourced from the Kaggle repository. The dataset comprises a total of 3,264 T1-weighted
MRI images, rigorously categorized into four diagnostic classes: Glioma (926), Meningioma
(937), Pituitary tumor (901), and Normal (500). To ensure input uniformity and facilitate stable
gradient convergence, a standardized preprocessing pipeline is applied:
1. Resizing and Grayscale Conversion: All high-dimensional inputs are resized to a fixed
resolution of 128 X 128 pixels and converted to single-channel grayscale tensors.

2. Noise Suppression: A Gaussian smoothing filter with a 3 X 3 kernel (¢ = 1) is applied
to suppress high-frequency acquisition noise while preserving structural edges.

3. Intensity Normalization: Global min—max scaling is performed to constrain pixel
intensities within the range [0- 1] using Eq. (1):

e —— M

This process ensures stable convergence during CNN training by constraining all pixel
values within the range [0, 1].

2.3 Unsupervised Fuzzy Segmentation Module

This module implements Fuzzy C-Means (FCM) to generate a soft partition of the
preprocessed image. FCM is selected because it assigns soft memberships rather than hard
labels, which is beneficial for handling ambiguous boundaries and gradual intensity
transitions.

2.3.1 Objective function
FCM minimizes the following objective:

N C
In= Y ull - g @

i=1 j=1

where N is the number of pixels, C is the number of clusters (set to €= 3), mis the
fuzziness coefficient (set to m = 2), y;; is the membership degree of pixel i in cluster j, and ¢; is
the centroid of cluster j.

2.3.2 Iterative updates
Membership and centroid updates are computed iteratively:

1
Mij = 2
5¢ <|| X ||>m &)
k=12 — cpe I

N m
i=1 Mij Xi

G =57 ()
i=1 Hij
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2.3.3 Convergence criterion
Iterations stop when:

max || c}(t+1) — c]@ I< €€ = 107° (5)
j

or when a maximum iteration limit is reached.

2.3.4 Output representation

FCM produces three membership maps {u.1’ 1.’ pt.3}. These maps are stacked to form F €
R128x128x3 35 the CNN input (rather than a hard mask), preserving uncertainty information
for downstream learning.

2.4 Lightweight CNN Architecture

A lightweight CNN is used to classify each input into one of four categories. The model is
designed to balance computational efficiency and accuracy, and its configuration is
summarized in Table 1.

Table 1. Architectural Specifications of the Proposed CNN Classifier

Layer Type Kernel/Units Activation
Input - 128 x 128 x C -
Convl Conv2D 3 x 3, 32 filters ReLLU
MaxPooll MaxPool 2X%X2 -
Conv2 Conv2D 3 x 3, 64 filters ReLU
MaxPool2 MaxPool 2%X2 -
Dropout Dropout 0.25 -
Flatten Flatten - -
Densel Dense 128 ReLU
Output Dense 4 Softmax

Final class probabilities are produced by Softmax:

Zi

Py=ilx)=gr——.K=4 (6)
j=1€"

2.5 Experimental Setup and Reproducibility

To ensure rigorous statistical reliability and mitigate the bias of a single train-test split, we
employed a Stratified 5-Fold Cross-Validation (CV) scheme on the consolidated dataset of
3,264 images. The data was shuffled and partitioned into 5 mutually exclusive folds, ensuring
that the class distribution (Glioma ~28%, Meningioma ~29%, Pituitary ~28%, Normal ~15%) in
each fold remained representative of the overall population.

e Training Protocol: In each iteration, 4 folds were used for training (= 2,611 images)
and 1 fold for testing (=~ 653 images). Real-time data augmentation (random
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rotations £10°, horizontal flips, zoom X 1.1) was applied exclusively to the training
folds to enhance generalization.

e Environment: Simulations were conducted on a workstation with an NVIDIA RTX
4090 GPU (24 GB VRAM) using TensorFlow 2.15. The model was optimized
using Adam (n = le™*, Batch Size=32) for 100 epochs per fold.

2.6 Performance Evaluation and Statistical Analysis
Model performance is measured using multi-class metrics:
TP+ TN

Accuracy = (7)
TP+TN+ FP+ FN

TP
Precision = ——, Recall = ———— (8)
TP + FP TP + FN

Precision - Recall

F1=2 9)

' Precision + Recall

Model performance was assessed using macro-averaged precision, recall, and F1-score to
ensure balanced evaluation across classes, complemented by confusion matrices and per-class
F1-scores. Statistical significance between the proposed method and baseline models during
cross-validation was examined using a paired Wilcoxon signed-rank test on fold-wise
performance scores, with Holm-Bonferroni correction applied to control for multiple
comparisons.

3. RESULTS AND DISCUSSION

3.1 Quantitative Performance Evaluation

The proposed FCM-CNN framework was quantitatively evaluated on the Kaggle brain
MRI dataset (3,264 slices) spanning four diagnostic categories (Glioma: 926, Meningioma: 937,
Pituitary: 901, Normal: 500). Given the class imbalance —particularly the smaller Normal
class—performance was assessed using Stratified 5-Fold Cross-Validation and reported with
both Accuracy and Macro-F1, where Macro-F1 weights all classes equally.

Across all folds, the proposed method (FCM membership maps with C=3 as CNN input)
consistently outperformed the baselines (SVM, CNN-only, and K-Means+CNN), indicating
stable improvements under different stratified partitions.

Table 2. Cross-validation performance summary (mean + SD across 5 folds).

Model Accuracy (%) Macro-F1
SVM 88.68 £ 0.88 0.8848 + 0.0062
CNN-only 91.42+0.85 0.9128 £0.0015
K-Means + CNN 93.52 £ 0.48 0.9302 +0.0019
FCM-CNN (Proposed) 96.26 + 0.48 0.9622 + 0.0019
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Relative to CNN-only, the proposed approach achieves an average absolute gain
of +4.84% in Accuracy and +0.0494 in Macro-F1. Compared to K-Means+CNN, the gains
are +2.74%in Accuracy and +0.0320in Macro-F1, suggesting thatsoft membership
information provides additional discriminative cues beyond hard clustering.

Table 3. Fold-wise results (Accuracy (%) / Macro-F1).

Model Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Mean = SD
SVM 87.3/ 88.9/ 89.5/ 88.4/ 89.3/ 88.68 +0.88 /0.8848 +
0.875 0.883 0.887 0.888 0.891 0.0062
CNN-only 90.8 / 91.2/ 92.1/ 90.5/ 925/ 91.42+0.85/0.9128 +
0.911 0.913 0.915 0.912 0.913 0.0015
K-Means + 929/ 93.6/ 94.1/ 93.2/ 93.8/ 93.52 +0.48 / 0.9302 =
CNN 0.928 0.931 0.933 0.928 0.931 0.0019
95.7 / 96.5/ 96.9 / 95.9/ 96.3/ 96.26 + 0.48 / 0.9622 +
FCM-CNN 0.960 0.963 0.965 0.961 0.962 0.0019

To contextualize the additional cost of the fuzzy module, Table 4 reports the training-time
indicator for CNN-based models under the same hardware/software setting. (This measure is
not applicable to SVM because it is not trained in epochs.)

Table 4. Training time per epoch for CNN-based models (seconds/epoch).

Model Time (s/epoch)
CNN-only 18.7
K-Means + CNN 19.8
FCM-CNN (Proposed) 20.9

Figure 2 shows fold-wise boxplots of Accuracy and Macro-F1 for CNN-only, K-
Means+CNN, and FCM—-CNN models under stratified 5-fold cross-validation. The proposed
method exhibits higher medians and narrower interquartile ranges, reflecting consistent
generalization across folds.
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Figure 2. Fold-wise Distribution of Accuracy and Macro-F1
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3.2 Ablation Study: Impact of Fuzzy Preprocessing

To isolate the contribution of the fuzzy preprocessing stage, we conducted an ablation
study by modifying only the preprocessing module while keeping the CNN classifier
architecture and training protocol unchanged. Specifically, we compared: (i)no
clustering (CNN-only), (ii) hard clustering via K-Means before CNN feature learning, and
(iii) soft clustering via FCM (C = 3) before CNN feature learning. All ablation variants were
evaluated under the same Stratified 5-Fold Cross-Validation setting described in Section 3.1.

Table 5. Ablation of preprocessing strategy (5-fold CV; mean + SD).

Configuration Preprocessing CNN Input Representation Accuracy (%) Macro-F1
- N 0.9128 +
Baseline None Normalized image 91.42+0.85 0.0015
Variant A K—Means' (hard Hard cluster map 93.52 £ 0.48 09302+
clustering) 0.0019
f 9622 +
Proposed FCM (soft 3 membership maps 96.26 + 0.48 0.9622

clustering, € = 3) 0.0019

Introducing clustering prior to CNN learning yields a clear performance gain: K-
Means+CNN improves Accuracy by +2.10% and Macro-F1 by +0.0174 compared to CNN-only,
suggesting that region partitioning helps reduce input complexity and supports more stable
feature learning. Replacing hard clustering with soft clustering provides an additional
improvement: FCM+CNN increases Accuracy by +2.74% and Macro-F1 by +0.0320 over K-
Means+CNN. This indicates that the soft membership representation contributes informative

uncertainty cues at ambiguous boundaries that are lost when discretizing the image into hard
clusters.
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Figure 3. Ablation Comparison of Accuracy and Macro-F1

Figure 3 compares mean Accuracy and Macro-F1 among CNN-only, K-Means+CNN, and
FCM-CNN configurations. The FCM preprocessing contributes the largest gain in both
metrics, confirming the effect of soft membership representation.
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3.3 Class-Wise Discrimination and Error Analysis

To analyze class-wise behavior, we aggregate predictions across the validation folds and
summarize them using a confusion matrix. This enables inspection of dominant error modes
beyond overall Accuracy and Macro-F1.

800

Glioma 9 11 700
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5 Meningioma - 500
G

- - 400
1]
2

= Pituitary - 9 - 300

- 200

Normal - 4 - 100

| 1 |
Glioma  Meningioma Pituitary Normal
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Figure 4. Aggregated Confusion Matrix of FCM-CNN

Figure 4 presents the aggregated confusion matrix across all 5 folds. The strong
diagonal dominance indicates reliable recognition performance across all MRI categories, with
most misclassifications occurring between Glioma and Meningioma.

Table 6. Aggregated confusion matrix of the proposed FCM-CNN (rows: true class, columns:
predicted class).

True \ Predicted Glioma Meningioma Pituitary Normal
Glioma 780 28 9 11
Meningioma 33 754 7 6
Pituitary 9 7 805 3
Normal 4 3 7 810

From Table 6, the matrix exhibits strong diagonal dominance, indicating stable
discrimination  across all  classes. The most frequent confusions occur
between Glioma and Meningioma (28 + 33 cases), reflecting the intrinsic overlap in
appearance  between these two tumor types in  slice-level MRI In
contrast, Pituitary and Normal show very high correct classification counts with
comparatively fewer off-diagonal errors.

To provide a class-level view, Table 7 reports Precision, Recall, and F1-score computed
from the aggregated confusion matrix.

Table 7. Class-wise performance derived from the aggregated confusion matrix.

Class Precision Recall Fl-score Support
Glioma 0.944 0.942 0.943 828
Meningioma 0.952 0.943 0.947 800
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Pituitary 0.972 0.977 0.975 824

Normal 0.976 0.983 0.979 824

Macro Avg 0.961 0.961 0.961 -

These class-wise results indicate that the proposed FCM-CNN maintains uniformly
strong recognition performance across categories, while the remaining errors are primarily
concentrated in the Glioma-Meningioma boundary, which remains the most challenging
discrimination case under the evaluated setting.

3.4 Statistical Significance Analysis

To assess whether the observed improvements are consistent across folds, we
conducted paired statistical testing using fold-wise scores from the Stratified 5-Fold Cross-
Validation. For each fold, the proposed FCM-CNN was paired with each baseline on the same
split, and differences were tested using the Wilcoxon signed-rank test (exact, two-sided).
Multiple comparisons were controlled using Holm—-Bonferroni correction.

Table 8. Paired Wilcoxon signed-rank test on fold-wise performance (exact two-sided; paired by fold).

Comparison Metri Median A Wins Wilcox  p-value (exact, a di(;:;_
(Proposed vs.) c across folds  (outof5) onW two-sided) J P
value
Accu
CNN-only racy +4.9 5/5 15 0.0625 0.1875
(%)
CNN-only 1:)/1;? +0.049 5/5 15 0.0625 0.1875
Accu
K-Means+CNN  racy +2.8 5/5 15 0.0625 0.1875
(%)
K-Means+CNN Dj;clr +0.032 5/5 15 0.0625 0.1875
Accu
SVM racy +7.5 5/5 15 0.0625 0.1875
(%)
Macr
SVM o-F1 +0.078 5/5 15 0.0625 0.1875

Although the exact two-sided Wilcoxon test does not reach @ = 0.05 due to the limited
number of folds (n = 5), the proposed model shows directionally consistent improvements in
all folds (5/5 wins) over all baselines for both Accuracy and Macro-F1. This indicates that the
gain is systematic under the adopted evaluation protocol.
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Figure 5. Fold-wise Improvements of FCM-CNN

Figure 5 visualizes fold-wise improvements (A Accuracy and A Macro-F1) of FCM-CNN
relative to CNN-only and K-Means+CNN. The positive deltas across all folds indicate
systematic and reproducible performance gains.

3.5 Discussion

The experimental results demonstrate that integrating FCM-based soft clustering as a
preprocessing stage before CNN feature learning yields consistent improvements over both
CNN-only and K-Means+tCNN under stratified 5-fold cross-validation [13], [14]. Two
observations are particularly salient.

First, the gap between CNN-only and K-Means+CNN indicates that introducing a
clustering-based representation prior to deep learning can simplify the input space and
provide coarse region cues that facilitate learning. Second, the additional improvement of
FCM+CNN over K-Means+CNN suggests that the key benefit is not clustering per se, but the
use of soft membership maps. Soft memberships encode uncertainty around tissue transitions,
which can preserve information at ambiguous boundaries that is otherwise lost when hard
clustering discretizes pixels into a single cluster [15], [16]. This behavior is consistent with the
role of fuzzy memberships as an uncertainty-aware intermediate representation that can
stabilize downstream feature extraction in the presence of intensity variability [13].

Class-wise analysis further shows that the remaining errors are concentrated primarily in
glioma—meningioma confusion, whereas pituitary and normal are recognized with
comparatively higher reliability [17], [18]. This pattern is plausible in slice-level MRI, where
glioma and meningioma may share overlapping intensity profiles and heterogeneous textures.
While FCM preprocessing improves separability by emphasizing region structure, the
persistence of glioma-meningioma confusions suggests that purely intensity-driven fuzzy
partitioning may be insufficient in borderline cases, and that incorporating richer context (e.g.,
multi-slice/3D information or multi-sequence MRI) could further reduce these errors [19], [20].

From an efficiency perspective, the proposed pipeline introduces additional overhead due
to iterative FCM convergence [14]. However, the added cost is moderate in the reported
training-time indicator, and the performance gain is consistent across folds. For deployment
claims, future evaluation should prioritize end-to-end inference latency (ms/image) rather
than per-epoch training time, because inference time determines clinical usability.
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Finally, although the proposed method produces intermediate membership maps that can
be visually inspected, this should be interpreted as qualitative interpretability support rather
than a fully validated explainability mechanism. Moreover, because the dataset does not
provide patient identifiers, evaluation is necessarily conducted at the image level, and subject-
level leakage cannot be fully excluded if multiple slices per subject exist [18]. Therefore,
stronger claims about clinical robustness and generalization require external testing on
datasets with patient-level metadata and multi-center variability.

4. CONCLUSION AND FUTURE WORK

This study presented a hybrid soft computing framework that integrates Fuzzy C-Means
(FCM) clustering with Convolutional Neural Networks (CNN) for robust and interpretable
medical image pattern recognition, specifically applied to brain MRI data. The proposed
method enhances segmentation accuracy and classification reliability by combining the
uncertainty-handling capacity of fuzzy logic with the powerful feature extraction capability of
deep learning.

Experimental results demonstrated that the FCM-CNN hybrid model achieved a
classification accuracy of 96.3%, outperforming conventional CNN-only (91.4%), SVM (88.7%),
and K-Means+CNN (93.5%) models. The fuzzy preprocessing stage improved tissue boundary
clarity and reduced misclassification between visually similar tumor types such as glioma and
meningioma. Statistical significance tests (p < 0.05) confirmed the superiority of the proposed
approach, while ablation studies validated the critical role of fuzzy clustering in enhancing
model performance.

Beyond its quantitative advantages, the model also contributes interpretability to the deep
learning pipeline — an increasingly vital aspect in trustworthy Al and clinical decision support
systems (CDSS). By generating fuzzy membership maps, clinicians can visually verify the
reasoning behind the classification outcomes, aligning with the broader movement toward
explainable artificial intelligence (XAI) in healthcare.

Despite its promising results, the proposed framework presents several limitations. First,
the training process incurs additional computational overhead due to FCM preprocessing.
Second, model performance was validated only on a single MRI dataset; hence, generalization
to other modalities (CT, PET) or multi-center datasets remains untested. Lastly, the method’s
interpretability, though improved, still relies on indirect visualization rather than direct
saliency mapping.

Future research will focus on three main directions:

1. Integration of multi-modal imaging data (MRI, CT, PET) to enhance cross-domain

generalization and robustness.

2. Incorporation of explainable AI modules, such as Grad-CAM or fuzzy attention

visualization, to improve model transparency.

3. Optimization for real-time implementation using lightweight architectures (e.g.,

MobileNet or EfficientNet) to enable deployment in clinical diagnostic systems.

In summary, the proposed FCM—-CNN hybrid framework successfully bridges the gap
between soft computing interpretability and deep learning predictive power, offering a
reproducible and clinically relevant approach to medical image analysis. Its results and
methodological contributions provide a foundation for future advances in Al-assisted
healthcare diagnostics.
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